These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 24875006)
21. Facile and scalable production of heterostructured ZnS-ZnO/Graphene nano-photocatalysts for environmental remediation. Lonkar SP; Pillai VV; Alhassan SM Sci Rep; 2018 Sep; 8(1):13401. PubMed ID: 30194393 [TBL] [Abstract][Full Text] [Related]
22. Visible light catalysis-assisted assembly of Ni(h)-QD hollow nanospheres in situ via hydrogen bubbles. Li ZJ; Fan XB; Li XB; Li JX; Ye C; Wang JJ; Yu S; Li CB; Gao YJ; Meng QY; Tung CH; Wu LZ J Am Chem Soc; 2014 Jun; 136(23):8261-8. PubMed ID: 24835886 [TBL] [Abstract][Full Text] [Related]
23. Aqueous synthesis of Cu-doped ZnCdS/ZnS core/shell nanocrystals with a new and highly reactive sulfur source. Zeng R; Shen R; Zhao Y; Li X; Sun Z; Shen Y Nanotechnology; 2014 Apr; 25(13):135602. PubMed ID: 24583650 [TBL] [Abstract][Full Text] [Related]
24. Surface doping for photocatalytic purposes: relations between particle size, surface modifications, and photoactivity of SnO(2):Zn2+ nanocrystals. Li L; Liu J; Su Y; Li G; Chen X; Qiu X; Yan T Nanotechnology; 2009 Apr; 20(15):155706. PubMed ID: 19420558 [TBL] [Abstract][Full Text] [Related]
25. Spatially ordered NiOOH-ZnS/CdS heterostructures with an efficient photo-carrier transmission channel for markedly improved H Xin X; Qiu Y; Jiang C; Li Y; Wang H; Xu J; Lin H; Wang L; Turkevych V Dalton Trans; 2024 Apr; 53(16):7131-7141. PubMed ID: 38568717 [TBL] [Abstract][Full Text] [Related]
26. Metallic MoO₂ cocatalyst significantly enhances visible-light photocatalytic hydrogen production over Mo₂/Zn₀.₅Cd₀.₅S heterojunction. Du H; Xie X; Zhu Q; Lin L; Jiang YF; Yang ZK; Zhou X; Xu AW Nanoscale; 2015 Mar; 7(13):5752-9. PubMed ID: 25751055 [TBL] [Abstract][Full Text] [Related]
27. Gram-scale synthesis of ZnS/NiO core-shell hierarchical nanostructures and their enhanced H Navakoteswara Rao V; Preethi V; Bhargav U; Ravi P; Kumar A; Sathish M; Krishnan V; Venkatramu V; Mamatha Kumari M; Reddy KR; Shetti NP; Aminabhavi TM; Shankar MV Environ Res; 2021 Aug; 199():111323. PubMed ID: 33989620 [TBL] [Abstract][Full Text] [Related]
28. Characterization of visible-light photo-Fenton reactions using Fe-doped ZnS (Fe Wang Q; Xu P; Zhang G; Zhang W; Hu L; Wang P Phys Chem Chem Phys; 2018 Jul; 20(27):18601-18609. PubMed ID: 29953161 [TBL] [Abstract][Full Text] [Related]
29. Facile preparation of Zn Dong J; Fang W; Xia W; Lu Q; Zeng X RSC Adv; 2021 Jun; 11(35):21642-21650. PubMed ID: 35478814 [TBL] [Abstract][Full Text] [Related]
30. A facile green antisolvent approach to Cu2+-doped ZnO nanocrystals with visible-light-responsive photoactivities. Lu YH; Lin WH; Yang CY; Chiu YH; Pu YC; Lee MH; Tseng YC; Hsu YJ Nanoscale; 2014 Aug; 6(15):8796-803. PubMed ID: 24954742 [TBL] [Abstract][Full Text] [Related]
31. One-step solvothermal fabrication of Cu@PANI core-shell nanospheres for hydrogen evolution. Wang T; Wu D; Wang Y; Huang T; Histand G; Wang T; Zeng H Nanoscale; 2018 Nov; 10(46):22055-22064. PubMed ID: 30452053 [TBL] [Abstract][Full Text] [Related]
32. Noble-metal-free carbon nanotube-Cd0.1Zn0.9S composites for high visible-light photocatalytic H2-production performance. Yu J; Yang B; Cheng B Nanoscale; 2012 Apr; 4(8):2670-7. PubMed ID: 22422167 [TBL] [Abstract][Full Text] [Related]
33. Outside-in recrystallization of ZnS-Cu1.8 S hollow spheres with interdispersed lattices for enhanced visible light solar hydrogen generation. Zhu T; Nuo Peh CK; Hong M; Ho GW Chemistry; 2014 Sep; 20(36):11505-10. PubMed ID: 25043270 [TBL] [Abstract][Full Text] [Related]
34. Enhanced photocatalytic hydrogen evolution efficiency using hollow microspheres of (CuIn)(x)Zn(2(1-x))S2 solid solutions. Huang Y; Chen J; Zou W; Zhang L; Hu L; Yu R; Deng J; Xing X Dalton Trans; 2015 Jun; 44(24):10991-6. PubMed ID: 25989186 [TBL] [Abstract][Full Text] [Related]
35. Controlled synthesis of Bi2S3/ZnS microspheres by an in situ ion-exchange process with enhanced visible light photocatalytic activity. Wu Z; Chen L; Xing C; Jiang D; Xie J; Chen M Dalton Trans; 2013 Sep; 42(36):12980-8. PubMed ID: 23868676 [TBL] [Abstract][Full Text] [Related]
36. Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods. Wu K; Zhu H; Lian T Acc Chem Res; 2015 Mar; 48(3):851-9. PubMed ID: 25682713 [TBL] [Abstract][Full Text] [Related]
37. One-step facile synthesis and high H Zhong W; Huang X; Xu Y; Yu H Nanoscale; 2018 Nov; 10(41):19418-19426. PubMed ID: 30307455 [TBL] [Abstract][Full Text] [Related]
38. High-efficiency plasmon-enhanced and graphene-supported semiconductor/metal core-satellite hetero-nanocrystal photocatalysts for visible-light dye photodegradation and H2 production from water. Zhang J; Wang P; Sun J; Jin Y ACS Appl Mater Interfaces; 2014 Nov; 6(22):19905-13. PubMed ID: 25369420 [TBL] [Abstract][Full Text] [Related]
39. An efficient method to enhance the stability of sulphide semiconductor photocatalysts: a case study of N-doped ZnS. Zhou Y; Chen G; Yu Y; Feng Y; Zheng Y; He F; Han Z Phys Chem Chem Phys; 2015 Jan; 17(3):1870-6. PubMed ID: 25474654 [TBL] [Abstract][Full Text] [Related]
40. Photocatalytic performance of novel samarium-doped spherical-like ZnO hierarchical nanostructures under visible light irradiation for 2,4-dichlorophenol degradation. Sin JC; Lam SM; Lee KT; Mohamed AR J Colloid Interface Sci; 2013 Jul; 401():40-9. PubMed ID: 23618322 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]