BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 24875007)

  • 1. The conserved miR-8/miR-200 microRNA family and their role in invertebrate and vertebrate neurogenesis.
    Trümbach D; Prakash N
    Cell Tissue Res; 2015 Jan; 359(1):161-77. PubMed ID: 24875007
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developmental expression and evolution of muscle-specific microRNAs conserved in vertebrates.
    Tani S; Kuraku S; Sakamoto H; Inoue K; Kusakabe R
    Evol Dev; 2013; 15(4):293-304. PubMed ID: 23809703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MiR-15/16 complex targets p70S6 kinase 1 and controls cell proliferation in MDA-MB-231 breast cancer cells.
    Janaki Ramaiah M; Lavanya A; Honarpisheh M; Zarea M; Bhadra U; Bhadra MP
    Gene; 2014 Dec; 552(2):255-64. PubMed ID: 25261849
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MiR-124 is involved in post-transcriptional regulation of Polypyrimidine tract binding protein 1 (PTBP1) during neural development in the medaka, Oryzias latipes.
    Kato Y; Kusakabe R; Inoue K; Tochinai S
    Zoolog Sci; 2013 Nov; 30(11):891-900. PubMed ID: 24199853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discovery and profiling of bovine microRNAs from immune-related and embryonic tissues.
    Coutinho LL; Matukumalli LK; Sonstegard TS; Van Tassell CP; Gasbarre LC; Capuco AV; Smith TP
    Physiol Genomics; 2007 Mar; 29(1):35-43. PubMed ID: 17105755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular evolution of a microRNA cluster.
    Tanzer A; Stadler PF
    J Mol Biol; 2004 May; 339(2):327-35. PubMed ID: 15136036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. miR-9 controls the timing of neurogenesis through the direct inhibition of antagonistic factors.
    Coolen M; Thieffry D; Drivenes Ø; Becker TS; Bally-Cuif L
    Dev Cell; 2012 May; 22(5):1052-64. PubMed ID: 22595676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Target identification of microRNAs expressed highly in human embryonic stem cells.
    Li SS; Yu SL; Kao LP; Tsai ZY; Singh S; Chen BZ; Ho BC; Liu YH; Yang PC
    J Cell Biochem; 2009 Apr; 106(6):1020-30. PubMed ID: 19229866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [miR-9: a key factor of the physiopathological regulation of the neural progenitor state].
    Coolen M; Bally-Cuif L
    Med Sci (Paris); 2013 Nov; 29(11):1010-7. PubMed ID: 24280505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developmental regulation and evolution of muscle-specific microRNAs.
    Kusakabe R; Inoue K
    Semin Cell Dev Biol; 2015 Dec; 47-48():9-16. PubMed ID: 26493706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution and function of the extended miR-2 microRNA family.
    Marco A; Hooks K; Griffiths-Jones S
    RNA Biol; 2012 Mar; 9(3):242-8. PubMed ID: 22336713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep conservation of microRNA-target relationships and 3'UTR motifs in vertebrates, flies, and nematodes.
    Chen K; Rajewsky N
    Cold Spring Harb Symp Quant Biol; 2006; 71():149-56. PubMed ID: 17381291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative evolutionary analysis of the FoxG1 transcription factor from diverse vertebrates identifies conserved recognition sites for microRNA regulation.
    Bredenkamp N; Seoighe C; Illing N
    Dev Genes Evol; 2007 Mar; 217(3):227-33. PubMed ID: 17260156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of microRNAs in neural stem cells and neurogenesis.
    Ji F; Lv X; Jiao J
    J Genet Genomics; 2013 Feb; 40(2):61-6. PubMed ID: 23439404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression and function of microRNA-9 in the mid-hindbrain area of embryonic chick.
    Alwin Prem Anand A; Huber C; Asnet Mary J; Gallus N; Leucht C; Klafke R; Hirt B; Wizenmann A
    BMC Dev Biol; 2018 Feb; 18(1):3. PubMed ID: 29471810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drosophila miR-124 regulates neuroblast proliferation through its target anachronism.
    Weng R; Cohen SM
    Development; 2012 Apr; 139(8):1427-34. PubMed ID: 22378639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MicroRNA-183 family conservation and ciliated neurosensory organ expression.
    Pierce ML; Weston MD; Fritzsch B; Gabel HW; Ruvkun G; Soukup GA
    Evol Dev; 2008; 10(1):106-13. PubMed ID: 18184361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MicroRNA-9 Couples Brain Neurogenesis and Angiogenesis.
    Madelaine R; Sloan SA; Huber N; Notwell JH; Leung LC; Skariah G; Halluin C; Paşca SP; Bejerano G; Krasnow MA; Barres BA; Mourrain P
    Cell Rep; 2017 Aug; 20(7):1533-1542. PubMed ID: 28813666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amplification and sequencing of mature microRNAs in uncharacterized animal models using stem-loop reverse transcription-polymerase chain reaction.
    Biggar KK; Kornfeld SF; Storey KB
    Anal Biochem; 2011 Sep; 416(2):231-3. PubMed ID: 21651887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genomic organization and embryonic expression of miR-430 in medaka (Oryzias latipes): insights into the post-transcriptional gene regulation in early development.
    Tani S; Kusakabe R; Naruse K; Sakamoto H; Inoue K
    Gene; 2010 Jan; 449(1-2):41-9. PubMed ID: 19770025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.