These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 24875181)

  • 1. Evaluation of renal nerve morphological changes and norepinephrine levels following treatment with novel bipolar radiofrequency delivery systems in a porcine model.
    Cohen-Mazor M; Mathur P; Stanley JR; Mendelsohn FO; Lee H; Baird R; Zani BG; Markham PM; Rocha-Singh K
    J Hypertens; 2014 Aug; 32(8):1678-91; discussion 1691-2. PubMed ID: 24875181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Procedural and Anatomical Determinants of Multielectrode Renal Denervation Efficacy.
    Tzafriri AR; Mahfoud F; Keating JH; Spognardi AM; Markham PM; Wong G; Highsmith D; O'Fallon P; Fuimaono K; Edelman ER
    Hypertension; 2019 Sep; 74(3):546-554. PubMed ID: 31303108
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Procedural and anatomical predictors of renal denervation efficacy using two radiofrequency renal denervation catheters in a porcine model.
    Wolf M; Hubbard B; Sakaoka A; Rousselle S; Tellez A; Jiang X; Kario K; Hohl M; Böhm M; Mahfoud F
    J Hypertens; 2018 Dec; 36(12):2453-2459. PubMed ID: 30005030
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Safety of catheter-based radiofrequency renal denervation on branch renal arteries in a porcine model.
    Sakaoka A; Rousselle SD; Hagiwara H; Tellez A; Hubbard B; Sakakura K
    Catheter Cardiovasc Interv; 2019 Feb; 93(3):494-502. PubMed ID: 30407718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficacy and safety of catheter-based radiofrequency renal denervation in stented renal arteries.
    Mahfoud F; Tunev S; Ruwart J; Schulz-Jander D; Cremers B; Linz D; Zeller T; Bhatt DL; Rocha-Singh K; Böhm M; Melder RJ
    Circ Cardiovasc Interv; 2014 Dec; 7(6):813-20. PubMed ID: 25336466
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Renal sympathetic nerve denervation using intraluminal ultrasound within a cooling balloon preserves the arterial wall and reduces sympathetic nerve activity.
    Pathak A; Coleman L; Roth A; Stanley J; Bailey L; Markham P; Ewen S; Morel C; Despas F; Honton B; Senard JM; Fajadet J; Mahfoud F
    EuroIntervention; 2015 Aug; 11(4):477-84. PubMed ID: 26298415
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of histopathologic analysis following renal sympathetic denervation over multiple time points.
    Sakakura K; Tunev S; Yahagi K; O'Brien AJ; Ladich E; Kolodgie FD; Melder RJ; Joner M; Virmani R
    Circ Cardiovasc Interv; 2015 Feb; 8(2):e001813. PubMed ID: 25652318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Renal denervation using catheter-based radiofrequency ablation with temperature control: renovascular safety profile and underlying mechanisms in a hypertensive canine model.
    Li H; Yu H; Zeng C; Fang Y; He D; Zhang X; Wen C; Yang C
    Clin Exp Hypertens; 2015; 37(3):207-11. PubMed ID: 25051229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Histological evidence supporting the durability of successful radiofrequency renal denervation in a normotensive porcine model.
    Sharp ASP; Tunev S; Schlaich M; Lee DP; Finn AV; Trudel J; Hettrick DA; Mahfoud F; Kandzari DE
    J Hypertens; 2022 Oct; 40(10):2068-2075. PubMed ID: 35866489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intravascular imaging, histopathological analysis, and catecholamine quantification following catheter-based renal denervation in a swine model: the impact of prebifurcation energy delivery.
    Delgado-Silva J; Fernandes R; Pita IR; Pereira FC; Jaguszewski M; Gutiérrez-Chico JL; Ribeiro-Rodrigues T; Girão H; Ioannou A; Gonçalves L
    Hypertens Res; 2018 Sep; 41(9):708-717. PubMed ID: 30006641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accurate Depth of Radiofrequency-Induced Lesions in Renal Sympathetic Denervation Based on a Fine Histological Sectioning Approach in a Porcine Model.
    Sakaoka A; Terao H; Nakamura S; Hagiwara H; Furukawa T; Matsumura K; Sakakura K
    Circ Cardiovasc Interv; 2018 Feb; 11(2):e005779. PubMed ID: 29440276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Renal artery nerve distribution and density in the porcine model: biologic implications for the development of radiofrequency ablation therapies.
    Tellez A; Rousselle S; Palmieri T; Rate WR; Wicks J; Degrange A; Hyon CM; Gongora CA; Hart R; Grundy W; Kaluza GL; Granada JF
    Transl Res; 2013 Dec; 162(6):381-9. PubMed ID: 23911638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphological assessment of renal arteries after radiofrequency catheter-based sympathetic denervation in a porcine model.
    Steigerwald K; Titova A; Malle C; Kennerknecht E; Jilek C; Hausleiter J; Nährig JM; Laugwitz KL; Joner M
    J Hypertens; 2012 Nov; 30(11):2230-9. PubMed ID: 22914572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catheter-Based Radiofrequency Renal Denervation: Location Effects on Renal Norepinephrine.
    Henegar JR; Zhang Y; Hata C; Narciso I; Hall ME; Hall JE
    Am J Hypertens; 2015 Jul; 28(7):909-14. PubMed ID: 25576624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acute changes in morphology and renal vascular relaxation function after renal denervation using temperature-controlled radiofrequency catheter.
    Su E; Zhao L; Gao C; Zhao W; Wang X; Qi D; Zhu L; Yang X; Zhu B; Liu Y
    BMC Cardiovasc Disord; 2019 Mar; 19(1):67. PubMed ID: 30902047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Randomised, blinded and controlled comparative study of chemical and radiofrequency-based renal denervation in a porcine model.
    Bertog S; Fischel TA; Vega F; Ghazarossian V; Pathak A; Vaskelyte L; Kent D; Sievert H; Ladich E; Yahagi K; Virmani R
    EuroIntervention; 2017 Feb; 12(15):e1898-e1906. PubMed ID: 27890862
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-Term Safety and Efficacy of Transcatheter Microwave and Radiofrequency Denervation in a Chronic Ovine Model.
    Balaji P; Barry MA; Tran VT; Marschner S; Lu J; Nguyen DM; Mina A; Bandodkar S; Alvarez S; James V; Ronquillo J; Varikatt W; Kovoor P; McEwan A; Thiagalingam A; Thomas SP; Qian PC
    J Am Heart Assoc; 2024 May; 13(9):e031795. PubMed ID: 38664237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bipolar multi-electrode balloon catheter radiofrequency renal denervation with the Vessix system: preclinical safety evaluation.
    Wilson GJ; Winsor-Hines D; Tunstall RR; Wilson PD; Hawley SP; Eskandarian M; Svajger G; Davis L; Bankes J; Huibregtse BA
    EuroIntervention; 2015 Feb; 10(10):1239-46. PubMed ID: 25701511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reinnervation of renal afferent and efferent nerves at 5.5 and 11 months after catheter-based radiofrequency renal denervation in sheep.
    Booth LC; Nishi EE; Yao ST; Ramchandra R; Lambert GW; Schlaich MP; May CN
    Hypertension; 2015 Feb; 65(2):393-400. PubMed ID: 25403610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Renal Sympathetic Denervation System via Intraluminal Ultrasonic Ablation: Therapeutic Intravascular Ultrasound Design and Preclinical Evaluation.
    Chernin G; Szwarcfiter I; Bausback Y; Jonas M
    J Vasc Interv Radiol; 2017 May; 28(5):740-748. PubMed ID: 28268057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.