These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 24875294)

  • 1. SHP2 regulates chondrocyte terminal differentiation, growth plate architecture and skeletal cell fates.
    Bowen ME; Ayturk UM; Kurek KC; Yang W; Warman ML
    PLoS Genet; 2014; 10(5):e1004364. PubMed ID: 24875294
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SHP2 Regulates the Osteogenic Fate of Growth Plate Hypertrophic Chondrocytes.
    Wang L; Huang J; Moore DC; Zuo C; Wu Q; Xie L; von der Mark K; Yuan X; Chen D; Warman ML; Ehrlich MG; Yang W
    Sci Rep; 2017 Oct; 7(1):12699. PubMed ID: 28983104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ptpn11 deletion in a novel progenitor causes metachondromatosis by inducing hedgehog signalling.
    Yang W; Wang J; Moore DC; Liang H; Dooner M; Wu Q; Terek R; Chen Q; Ehrlich MG; Quesenberry PJ; Neel BG
    Nature; 2013 Jul; 499(7459):491-5. PubMed ID: 23863940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heparanase stimulates chondrogenesis and is up-regulated in human ectopic cartilage: a mechanism possibly involved in hereditary multiple exostoses.
    Huegel J; Enomoto-Iwamoto M; Sgariglia F; Koyama E; Pacifici M
    Am J Pathol; 2015 Jun; 185(6):1676-85. PubMed ID: 25863260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ablation of Dnmt3b in chondrocytes suppresses cell maturation during embryonic development.
    Xu T; Wang C; Shen J; Tong P; O'Keefe R
    J Cell Biochem; 2018 Jul; 119(7):5852-5863. PubMed ID: 29637597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rheb1 is required for limb growth through regulating chondrogenesis in growth plate.
    Zhang Y; Wen J; Lai R; Zhang J; Li K; Zhang Y; Liu A; Bai X
    Cell Tissue Res; 2024 Mar; 395(3):261-269. PubMed ID: 38253890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Raf Kinases Are Essential for Phosphate Induction of ERK1/2 Phosphorylation in Hypertrophic Chondrocytes and Normal Endochondral Bone Development.
    Papaioannou G; Petit ET; Liu ES; Baccarini M; Pritchard C; Demay MB
    J Biol Chem; 2017 Feb; 292(8):3164-3171. PubMed ID: 28073913
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deletion of IFT80 Impairs Epiphyseal and Articular Cartilage Formation Due to Disruption of Chondrocyte Differentiation.
    Yuan X; Yang S
    PLoS One; 2015; 10(6):e0130618. PubMed ID: 26098911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FoxA family members are crucial regulators of the hypertrophic chondrocyte differentiation program.
    Ionescu A; Kozhemyakina E; Nicolae C; Kaestner KH; Olsen BR; Lassar AB
    Dev Cell; 2012 May; 22(5):927-39. PubMed ID: 22595668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From an orphan disease to a generalized molecular mechanism: PTPN11 loss-of-function mutations in the pathogenesis of metachondromatosis.
    Yang W; Neel BG
    Rare Dis; 2013; 1():e26657. PubMed ID: 25003010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perichondrium phenotype and border function are regulated by Ext1 and heparan sulfate in developing long bones: a mechanism likely deranged in Hereditary Multiple Exostoses.
    Huegel J; Mundy C; Sgariglia F; Nygren P; Billings PC; Yamaguchi Y; Koyama E; Pacifici M
    Dev Biol; 2013 May; 377(1):100-12. PubMed ID: 23458899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. α-parvin controls chondrocyte column formation and regulates long bone development.
    Yuan J; Guo L; Wang J; Zhou Z; Wu C
    Bone Res; 2023 Aug; 11(1):46. PubMed ID: 37607905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CCN1 Regulates Chondrocyte Maturation and Cartilage Development.
    Zhang Y; Sheu TJ; Hoak D; Shen J; Hilton MJ; Zuscik MJ; Jonason JH; O'Keefe RJ
    J Bone Miner Res; 2016 Mar; 31(3):549-59. PubMed ID: 26363286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lineage-specific differences and regulatory networks governing human chondrocyte development.
    Richard D; Pregizer S; Venkatasubramanian D; Raftery RM; Muthuirulan P; Liu Z; Capellini TD; Craft AM
    Elife; 2023 Mar; 12():. PubMed ID: 36920035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pth1r Signal in Gli1+ Cells Maintains Postnatal Cranial Base Synchondrosis.
    Amano K; Kitaoka Y; Kato S; Fujiwara M; Okuzaki D; Aikawa T; Kogo M; Iida S
    J Dent Res; 2023 Oct; 102(11):1241-1251. PubMed ID: 37575041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Emerging Role of Glucose Metabolism in Cartilage Development.
    Hollander JM; Zeng L
    Curr Osteoporos Rep; 2019 Apr; 17(2):59-69. PubMed ID: 30830516
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fibronectin isoforms promote postnatal skeletal development.
    Dinesh NEH; Baratang N; Rosseau J; Mohapatra R; Li L; Mahalingam R; Tiedemann K; Campeau PM; Reinhardt DP
    Matrix Biol; 2024 Nov; 133():86-102. PubMed ID: 39159790
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular mechanisms of environmental pollutant-induced cartilage damage: from developmental disorders to osteoarthritis.
    Skalny AV; Aschner M; Zhang F; Guo X; Buha Djordevic A; Sotnikova TI; Korobeinikova TV; Domingo JL; Farsky SHP; Tinkov AA
    Arch Toxicol; 2024 Sep; 98(9):2763-2796. PubMed ID: 38758407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DDRGK1 is required for the proper development and maintenance of the growth plate cartilage.
    Weisz-Hubshman M; Egunsula AT; Dawson B; Castellon A; Jiang MM; Chen-Evenson Y; Zhiyin Y; Lee B; Bae Y
    Hum Mol Genet; 2022 Aug; 31(16):2820-2830. PubMed ID: 35377455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinesin-1 promotes chondrocyte maintenance during skeletal morphogenesis.
    Santos-Ledo A; Garcia-Macia M; Campbell PD; Gronska M; Marlow FL
    PLoS Genet; 2017 Jul; 13(7):e1006918. PubMed ID: 28715414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.