BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 24875495)

  • 1. Differences in supraspinal and spinal excitability during various force outputs of the biceps brachii in chronic- and non-resistance trained individuals.
    Pearcey GE; Power KE; Button DC
    PLoS One; 2014; 9(5):e98468. PubMed ID: 24875495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Corticospinal excitability of the biceps brachii is shoulder position dependent.
    Collins BW; Cadigan EWJ; Stefanelli L; Button DC
    J Neurophysiol; 2017 Dec; 118(6):3242-3251. PubMed ID: 28855295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Corticospinal excitability to the biceps brachii and its relationship to postactivation potentiation of the elbow flexors.
    Collins BW; Gale LH; Buckle NCM; Button DC
    Physiol Rep; 2017 Apr; 5(8):. PubMed ID: 28455452
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chronic resistance training enhances the spinal excitability of the biceps brachii in the non-dominant arm at moderate contraction intensities.
    Philpott DT; Pearcey GE; Forman D; Power KE; Button DC
    Neurosci Lett; 2015 Jan; 585():12-6. PubMed ID: 25445370
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in supraspinal and spinal excitability of the biceps brachii following brief, non-fatiguing submaximal contractions of the elbow flexors in resistance-trained males.
    Aboodarda SJ; Copithorne DB; Pearcey GEP; Button DC; Power KE
    Neurosci Lett; 2015 Oct; 607():66-71. PubMed ID: 26415709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cadence-dependent changes in corticospinal excitability of the biceps brachii during arm cycling.
    Forman DA; Philpott DT; Button DC; Power KE
    J Neurophysiol; 2015 Oct; 114(4):2285-94. PubMed ID: 26289462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elbow angle modulates corticospinal excitability to the resting biceps brachii at both spinal and supraspinal levels.
    Dongés SC; Taylor JL; Nuzzo JL
    Exp Physiol; 2019 Apr; 104(4):546-555. PubMed ID: 30690803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The short-term recovery of corticomotor responses in elbow flexors.
    Aboodarda SJ; Fan S; Coates K; Millet GY
    BMC Neurosci; 2019 Mar; 20(1):9. PubMed ID: 30871475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Corticospinal excitability of the biceps brachii is higher during arm cycling than an intensity-matched tonic contraction.
    Forman D; Raj A; Button DC; Power KE
    J Neurophysiol; 2014 Sep; 112(5):1142-51. PubMed ID: 24899677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differences in corticospinal excitability to the biceps brachii between arm cycling and tonic contraction are not evident at the immediate onset of movement.
    Forman DA; Philpott DT; Button DC; Power KE
    Exp Brain Res; 2016 Aug; 234(8):2339-49. PubMed ID: 27038204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Knee extensors neuromuscular fatigue changes the corticospinal pathway excitability in biceps brachii muscle.
    Aboodarda SJ; Šambaher N; Millet GY; Behm DG
    Neuroscience; 2017 Jan; 340():477-486. PubMed ID: 27826108
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unilateral elbow flexion fatigue modulates corticospinal responsiveness in non-fatigued contralateral biceps brachii.
    Aboodarda SJ; Šambaher N; Behm DG
    Scand J Med Sci Sports; 2016 Nov; 26(11):1301-1312. PubMed ID: 26633736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Muscle length and joint angle influence spinal but not corticospinal excitability to the biceps brachii across forearm postures.
    Forman DA; Abdel-Malek D; Bunce CMF; Holmes MWR
    J Neurophysiol; 2019 Jul; 122(1):413-423. PubMed ID: 31116661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Corticospinal excitability to the biceps and triceps brachii during forward and backward arm cycling is direction- and phase-dependent.
    Nippard AP; Lockyer EJ; Button DC; Power KE
    Appl Physiol Nutr Metab; 2020 Jan; 45(1):72-80. PubMed ID: 31167082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arm-cycling sprints induce neuromuscular fatigue of the elbow flexors and alter corticospinal excitability of the biceps brachii.
    Pearcey GE; Bradbury-Squires DJ; Monks M; Philpott D; Power KE; Button DC
    Appl Physiol Nutr Metab; 2016 Feb; 41(2):199-209. PubMed ID: 26799694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contraction intensity-dependent variations in the responses to brain and corticospinal tract stimulation after a single session of resistance training in men.
    Colomer-Poveda D; Romero-Arenas S; Lundbye-Jensen J; Hortobágyi T; Márquez G
    J Appl Physiol (1985); 2019 Oct; 127(4):1128-1139. PubMed ID: 31436513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of forearm position and contraction intensity on cortical and spinal excitability during a submaximal force steadiness task of the elbow flexors.
    Yacyshyn AF; Kuzyk S; Jakobi JM; McNeil CJ
    J Neurophysiol; 2020 Feb; 123(2):522-528. PubMed ID: 31774348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cortical and spinal modulation of antagonist coactivation during a submaximal fatiguing contraction in humans.
    Lévénez M; Garland SJ; Klass M; Duchateau J
    J Neurophysiol; 2008 Feb; 99(2):554-63. PubMed ID: 18046002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-local muscle fatigue is mediated at spinal and supraspinal levels.
    Amiri E; Gharakhanlou R; Rajabi H; Giboin LS; Rezasoltani Z; Azma K
    Exp Brain Res; 2022 Jun; 240(6):1887-1897. PubMed ID: 35460346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase- and Workload-Dependent Changes in Corticospinal Excitability to the Biceps and Triceps Brachii during Arm Cycling.
    Spence AJ; Alcock LR; Lockyer EJ; Button DC; Power KE
    Brain Sci; 2016 Dec; 6(4):. PubMed ID: 27983685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.