These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 24875586)

  • 1. Melittin modifies bending elasticity in an unexpected way.
    Pott T; Gerbeaud C; Barbier N; Méléard P
    Chem Phys Lipids; 2015 Jan; 185():99-108. PubMed ID: 24875586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlation between Single-Molecule Dynamics and Biological Functions of Antimicrobial Peptide Melittin.
    Xu C; Ma W; Wang K; He K; Chen Z; Liu J; Yang K; Yuan B
    J Phys Chem Lett; 2020 Jun; 11(12):4834-4841. PubMed ID: 32478521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal fluctuation and elasticity of lipid vesicles interacting with pore-forming peptides.
    Lee JH; Choi SM; Doe C; Faraone A; Pincus PA; Kline SR
    Phys Rev Lett; 2010 Jul; 105(3):038101. PubMed ID: 20867811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of antimicrobial peptide on the dynamics of phosphocholine membrane: role of cholesterol and physical state of bilayer.
    Sharma VK; Mamontov E; Anunciado DB; O'Neill H; Urban VS
    Soft Matter; 2015 Sep; 11(34):6755-67. PubMed ID: 26212615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peptide-induced bilayer thinning structure of unilamellar vesicles and the related binding behavior as revealed by X-ray scattering.
    Su CJ; Wu SS; Jeng US; Lee MT; Su AC; Liao KF; Lin WY; Huang YS; Chen CY
    Biochim Biophys Acta; 2013 Feb; 1828(2):528-34. PubMed ID: 23123565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alamethicin influence on the membrane bending elasticity.
    Vitkova V; Méléard P; Pott T; Bivas I
    Eur Biophys J; 2006 Feb; 35(3):281-6. PubMed ID: 16211403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vesicle budding induced by a pore-forming peptide.
    Yu Y; Vroman JA; Bae SC; Granick S
    J Am Chem Soc; 2010 Jan; 132(1):195-201. PubMed ID: 20000420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Action of Antimicrobial Peptides on Bacterial and Lipid Membranes: A Direct Comparison.
    Faust JE; Yang PY; Huang HW
    Biophys J; 2017 Apr; 112(8):1663-1672. PubMed ID: 28445757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamics of melittin binding to lipid bilayers. Aggregation and pore formation.
    Klocek G; Schulthess T; Shai Y; Seelig J
    Biochemistry; 2009 Mar; 48(12):2586-96. PubMed ID: 19173655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of cyclization of magainin 2 and melittin analogues on structure, function, and model membrane interactions: implication to their mode of action.
    Unger T; Oren Z; Shai Y
    Biochemistry; 2001 May; 40(21):6388-97. PubMed ID: 11371201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of α-helical peptides on liposome structure: a comparative study of melittin and alamethicin.
    Wessman P; Morin M; Reijmar K; Edwards K
    J Colloid Interface Sci; 2010 Jun; 346(1):127-35. PubMed ID: 20226468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipopolysaccharides in bacterial membranes act like cholesterol in eukaryotic plasma membranes in providing protection against melittin-induced bilayer lysis.
    Allende D; McIntosh TJ
    Biochemistry; 2003 Feb; 42(4):1101-8. PubMed ID: 12549932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring peptide membrane interaction using surface plasmon resonance: differentiation between pore formation versus membrane disruption by lytic peptides.
    Papo N; Shai Y
    Biochemistry; 2003 Jan; 42(2):458-66. PubMed ID: 12525173
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipid Headgroup Charge Controls Melittin Oligomerization in Membranes: Implications in Membrane Lysis.
    Pal S; Chakraborty H; Chattopadhyay A
    J Phys Chem B; 2021 Aug; 125(30):8450-8459. PubMed ID: 34254509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combining reflectometry and fluorescence microscopy: an assay for the investigation of leakage processes across lipid membranes.
    Stephan M; Mey I; Steinem C; Janshoff A
    Anal Chem; 2014 Feb; 86(3):1366-71. PubMed ID: 24377291
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Site of fluorescent label modifies interaction of melittin with live cells and model membranes.
    Jamasbi E; Ciccotosto GD; Tailhades J; Robins-Browne RM; Ugalde CL; Sharples RA; Patil N; Wade JD; Hossain MA; Separovic F
    Biochim Biophys Acta; 2015 Oct; 1848(10 Pt A):2031-9. PubMed ID: 26051124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of tryptophan environment in membrane-bound melittin by negatively charged phospholipids: implications in membrane organization and function.
    Ghosh AK; Rukmini R; Chattopadhyay A
    Biochemistry; 1997 Nov; 36(47):14291-305. PubMed ID: 9398147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cause and effect of melittin-induced pore formation: a computational approach.
    Manna M; Mukhopadhyay C
    Langmuir; 2009 Oct; 25(20):12235-42. PubMed ID: 19754202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism and kinetics of pore formation in membranes by water-soluble amphipathic peptides.
    Lee MT; Hung WC; Chen FY; Huang HW
    Proc Natl Acad Sci U S A; 2008 Apr; 105(13):5087-92. PubMed ID: 18375755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vesicle deposition and subsequent membrane-melittin interactions on different substrates: a QCM-D experiment.
    Lu NY; Yang K; Li JL; Yuan B; Ma YQ
    Biochim Biophys Acta; 2013 Aug; 1828(8):1918-25. PubMed ID: 23608122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.