BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 24875737)

  • 1. Embryonic stem cell identity grounded in the embryo.
    Plusa B; Hadjantonakis AK
    Nat Cell Biol; 2014 Jun; 16(6):502-4. PubMed ID: 24875737
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The ability of inner-cell-mass cells to self-renew as embryonic stem cells is acquired following epiblast specification.
    Boroviak T; Loos R; Bertone P; Smith A; Nichols J
    Nat Cell Biol; 2014 Jun; 16(6):516-28. PubMed ID: 24859004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uncovering the true identity of naïve pluripotent stem cells.
    Welling M; Geijsen N
    Trends Cell Biol; 2013 Sep; 23(9):442-8. PubMed ID: 23685019
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generating primed pluripotent epiblast stem cells: A methodology chapter.
    Samanta M; Kalantry S
    Curr Top Dev Biol; 2020; 138():139-174. PubMed ID: 32220296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of MAP2K and GSK3 signaling promotes bovine blastocyst development and epiblast-associated expression of pluripotency factors.
    Harris D; Huang B; Oback B
    Biol Reprod; 2013 Mar; 88(3):74. PubMed ID: 23390165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mga is essential for the survival of pluripotent cells during peri-implantation development.
    Washkowitz AJ; Schall C; Zhang K; Wurst W; Floss T; Mager J; Papaioannou VE
    Development; 2015 Jan; 142(1):31-40. PubMed ID: 25516968
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The germ cell determinant Blimp1 is not required for derivation of pluripotent stem cells.
    Bao S; Leitch HG; Gillich A; Nichols J; Tang F; Kim S; Lee C; Zwaka T; Li X; Surani MA
    Cell Stem Cell; 2012 Jul; 11(1):110-7. PubMed ID: 22770244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient derivation of bovine embryonic stem cells needs more than active core pluripotency factors.
    Maruotti J; Muñoz M; Degrelle SA; Gómez E; Louet C; Díez C; de Longchamp PH; Brochard V; Hue I; Caamaño JN; Jouneau A
    Mol Reprod Dev; 2012 Jul; 79(7):461-77. PubMed ID: 22573702
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative FAIRE-seq analysis reveals distinguishing features of the chromatin structure of ground state- and primed-pluripotent cells.
    Murtha M; Strino F; Tokcaer-Keskin Z; Sumru Bayin N; Shalabi D; Xi X; Kluger Y; Dailey L
    Stem Cells; 2015 Feb; 33(2):378-91. PubMed ID: 25335464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MCRS1 is essential for epiblast development during early mouse embryogenesis.
    Cui W; Cheong A; Wang Y; Tsuchida Y; Liu Y; Tremblay KD; Mager J
    Reproduction; 2020 Jan; 159(1):1-13. PubMed ID: 31671403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Suppression of Erk signalling promotes ground state pluripotency in the mouse embryo.
    Nichols J; Silva J; Roode M; Smith A
    Development; 2009 Oct; 136(19):3215-22. PubMed ID: 19710168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characteristics of bovine inner cell mass-derived cell lines and their fate in chimeric conceptuses.
    Furusawa T; Ohkoshi K; Kimura K; Matsuyama S; Akagi S; Kaneda M; Ikeda M; Hosoe M; Kizaki K; Tokunaga T
    Biol Reprod; 2013 Aug; 89(2):28. PubMed ID: 23782837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epigenetic differences between naïve and primed pluripotent stem cells.
    Takahashi S; Kobayashi S; Hiratani I
    Cell Mol Life Sci; 2018 Apr; 75(7):1191-1203. PubMed ID: 29134247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stepwise pluripotency transitions in mouse stem cells.
    Endoh M; Niwa H
    EMBO Rep; 2022 Sep; 23(9):e55010. PubMed ID: 35903955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of pluripotency in vivo and in vitro.
    Posfai E; Tam OH; Rossant J
    Curr Top Dev Biol; 2014; 107():1-37. PubMed ID: 24439801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient derivation of pluripotent stem cells from siRNA-mediated Cdx2-deficient mouse embryos.
    Wu G; Gentile L; Do JT; Cantz T; Sutter J; Psathaki K; Araúzo-Bravo MJ; Ortmeier C; Schöler HR
    Stem Cells Dev; 2011 Mar; 20(3):485-93. PubMed ID: 20536317
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression analysis of pluripotency factors in the undifferentiated porcine inner cell mass and epiblast during in vitro culture.
    Blomberg LA; Schreier LL; Talbot NC
    Mol Reprod Dev; 2008 Mar; 75(3):450-63. PubMed ID: 17680630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Completely ES cell-derived mice produced by tetraploid complementation using inner cell mass (ICM) deficient blastocysts.
    Wen D; Saiz N; Rosenwaks Z; Hadjantonakis AK; Rafii S
    PLoS One; 2014; 9(4):e94730. PubMed ID: 24733255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic changes in epigenetic marks and gene expression during porcine epiblast specification.
    Gao Y; Hyttel P; Hall VJ
    Cell Reprogram; 2011 Aug; 13(4):345-60. PubMed ID: 21718109
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of ground-state pluripotency by allelic regulation of Nanog.
    Miyanari Y; Torres-Padilla ME
    Nature; 2012 Feb; 483(7390):470-3. PubMed ID: 22327294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.