These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 24875856)

  • 21. Towards the phylogeny of chafers (Sericini): analysis of alignment-variable sequences and the evolution of segment numbers in the antennal club.
    Ahrens D; Vogler AP
    Mol Phylogenet Evol; 2008 May; 47(2):783-98. PubMed ID: 18372194
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phylogenetic diversification patterns and divergence times in ground beetles (Coleoptera: Carabidae: Harpalinae).
    Ober KA; Heider TN
    BMC Evol Biol; 2010 Aug; 10():262. PubMed ID: 20799952
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Postcopulatory sexual selection is associated with accelerated evolution of sperm morphology.
    Rowe M; Albrecht T; Cramer ER; Johnsen A; Laskemoen T; Weir JT; Lifjeld JT
    Evolution; 2015 Apr; 69(4):1044-52. PubMed ID: 25655075
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phylogenetic conservatism in skulls and evolutionary lability in limbs - morphological evolution across an ancient frog radiation is shaped by diet, locomotion and burrowing.
    Vidal-García M; Scott Keogh J
    BMC Evol Biol; 2017 Jul; 17(1):165. PubMed ID: 28693418
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Simultaneous integration and modularity underlie the exceptional body shape diversification of characiform fishes.
    Burns MD; Collyer ML; Sidlauskas BL
    Evolution; 2023 Mar; 77(3):746-762. PubMed ID: 36626807
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Foraging trait (co)variances in stickleback evolve deterministically and do not predict trajectories of adaptive diversification.
    Berner D; Stutz WE; Bolnick DI
    Evolution; 2010 Aug; 64(8):2265-77. PubMed ID: 20199566
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Are developmental shifts the main driver of phenotypic evolution in Diplodus spp. (Perciformes: Sparidae)?
    Colangelo P; Ventura D; Piras P; Pagani Guazzugli Bonaiuti J; Ardizzone G
    BMC Evol Biol; 2019 May; 19(1):106. PubMed ID: 31113358
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rate of evolutionary change in cranial morphology of the marsupial genus Monodelphis is constrained by the availability of additive genetic variation.
    Porto A; Sebastião H; Pavan SE; VandeBerg JL; Marroig G; Cheverud JM
    J Evol Biol; 2015 Apr; 28(4):973-85. PubMed ID: 25818173
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Neurogenomics and the role of a large mutational target on rapid behavioral change.
    Stanley CE; Kulathinal RJ
    Biol Direct; 2016 Nov; 11(1):60. PubMed ID: 27825385
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Geography of speciation affects rate of trait divergence in haemulid fishes.
    Tavera JJ; Wainwright PC
    Proc Biol Sci; 2019 Feb; 286(1896):20182852. PubMed ID: 30963939
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Diversity and constraints in the floral morphological evolution of Leandra s.str. (Melastomataceae).
    Reginato M; Michelangeli FA
    Ann Bot; 2016 Sep; 118(3):445-58. PubMed ID: 27401539
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparative analysis of Japanese three-spined stickleback clades reveals the Pacific Ocean lineage has adapted to freshwater environments while the Japan Sea has not.
    Ravinet M; Takeuchi N; Kume M; Mori S; Kitano J
    PLoS One; 2014; 9(12):e112404. PubMed ID: 25460163
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Body shape convergence driven by small size optimum in marine angelfishes.
    Frédérich B; Santini F; Konow N; Schnitzler J; Lecchini D; Alfaro ME
    Biol Lett; 2017 Jun; 13(6):. PubMed ID: 28615351
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Clines Arc through Multivariate Morphospace.
    Lohman BK; Berner D; Bolnick DI
    Am Nat; 2017 Apr; 189(4):354-367. PubMed ID: 28350497
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The signature of competition in ecomorphological traits across the avian radiation.
    Chira AM; Cooney CR; Bright JA; Capp EJR; Hughes EC; Moody CJA; Nouri LO; Varley ZK; Thomas GH
    Proc Biol Sci; 2020 Nov; 287(1938):20201585. PubMed ID: 33171084
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparative analysis of the multivariate genetic architecture of morphological traits in three species of Gomphocerine grasshoppers.
    Chakrabarty A; Schielzeth H
    Heredity (Edinb); 2020 Feb; 124(2):367-382. PubMed ID: 31649325
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phylogenetic tests for evolutionary innovation: the problematic link between key innovations and exceptional diversification.
    Rabosky DL
    Philos Trans R Soc Lond B Biol Sci; 2017 Dec; 372(1735):. PubMed ID: 29061890
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adult frogs and tadpoles have different macroevolutionary patterns across the Australian continent.
    Sherratt E; Vidal-García M; Anstis M; Keogh JS
    Nat Ecol Evol; 2017 Sep; 1(9):1385-1391. PubMed ID: 29046549
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Trophic niche shifts and phenotypic trait evolution are largely decoupled in Australasian parrots.
    García-Navas V; Tobias JA; Schweizer M; Wegmann D; Schodde R; Norman JA; Christidis L
    BMC Ecol Evol; 2021 Nov; 21(1):212. PubMed ID: 34837943
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genomic architecture of habitat-related divergence and signature of directional selection in the body shapes of Gnathopogon fishes.
    Kakioka R; Kokita T; Kumada H; Watanabe K; Okuda N
    Mol Ecol; 2015 Aug; 24(16):4159-74. PubMed ID: 26179373
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.