These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 24875907)
1. Development of in silico models for predicting LSER molecular parameters and for acute toxicity prediction to fathead minnow (Pimephales promelas). Lyakurwa FS; Yang X; Li X; Qiao X; Chen J Chemosphere; 2014 Aug; 108():17-25. PubMed ID: 24875907 [TBL] [Abstract][Full Text] [Related]
2. Development and validation of theoretical linear solvation energy relationship models for toxicity prediction to fathead minnow (Pimephales promelas). Lyakurwa F; Yang X; Li X; Qiao X; Chen J Chemosphere; 2014 Feb; 96():188-94. PubMed ID: 24216263 [TBL] [Abstract][Full Text] [Related]
3. Prediction of acute toxicity to Wu X; Guo J; Dang G; Sui X; Zhang Q SAR QSAR Environ Res; 2022 Aug; 33(8):583-600. PubMed ID: 35862554 [TBL] [Abstract][Full Text] [Related]
4. Statistically validated QSARs, based on theoretical descriptors, for modeling aquatic toxicity of organic chemicals in Pimephales promelas (fathead minnow). Papa E; Villa F; Gramatica P J Chem Inf Model; 2005; 45(5):1256-66. PubMed ID: 16180902 [TBL] [Abstract][Full Text] [Related]
5. A similarity-based QSAR model for predicting acute toxicity towards the fathead minnow (Pimephales promelas). Cassotti M; Ballabio D; Todeschini R; Consonni V SAR QSAR Environ Res; 2015; 26(3):217-43. PubMed ID: 25780951 [TBL] [Abstract][Full Text] [Related]
6. Validation of a QSAR model for acute toxicity. Pavan M; Netzeva TI; Worth AP SAR QSAR Environ Res; 2006 Apr; 17(2):147-71. PubMed ID: 16644555 [TBL] [Abstract][Full Text] [Related]
7. QSAR study of the acute toxicity to fathead minnow based on a large dataset. Wu X; Zhang Q; Hu J SAR QSAR Environ Res; 2016; 27(2):147-64. PubMed ID: 26911563 [TBL] [Abstract][Full Text] [Related]
8. QSAR model for predicting the toxicity of organic compounds to fathead minnow. Jia Q; Zhao Y; Yan F; Wang Q Environ Sci Pollut Res Int; 2018 Dec; 25(35):35420-35428. PubMed ID: 30350137 [TBL] [Abstract][Full Text] [Related]
9. Development of models to predict fish early-life stage toxicity from acute Daphnia magna toxicity Furuhama A; Hayashi TI; Yamamoto H SAR QSAR Environ Res; 2018 Sep; 29(9):725-742. PubMed ID: 30182748 [TBL] [Abstract][Full Text] [Related]
10. Using support vector regression coupled with the genetic algorithm for predicting acute toxicity to the fathead minnow. Wang Y; Zheng M; Xiao J; Lu Y; Wang F; Lu J; Luo X; Zhu W; Jianga H; Chen K SAR QSAR Environ Res; 2010 Jul; 21(5-6):559-70. PubMed ID: 20818588 [TBL] [Abstract][Full Text] [Related]
11. Consensus QSAR modeling of toxicity of pharmaceuticals to different aquatic organisms: Ranking and prioritization of the DrugBank database compounds. Khan K; Benfenati E; Roy K Ecotoxicol Environ Saf; 2019 Jan; 168():287-297. PubMed ID: 30390527 [TBL] [Abstract][Full Text] [Related]
12. The proposal of architecture for chemical splitting to optimize QSAR models for aquatic toxicity. Colombo A; Benfenati E; Karelson M; Maran U Chemosphere; 2008 Jun; 72(5):772-80. PubMed ID: 18471854 [TBL] [Abstract][Full Text] [Related]
13. Prediction of the acute toxicity (96-h LC50) of organic compounds to the fathead minnow (Pimephales promelas) using a group contribution method. Martin TM; Young DM Chem Res Toxicol; 2001 Oct; 14(10):1378-85. PubMed ID: 11599929 [TBL] [Abstract][Full Text] [Related]
14. Robust modelling of acute toxicity towards fathead minnow (Pimephales promelas) using counter-propagation artificial neural networks and genetic algorithm. Drgan V; Župerl Š; Vračko M; Como F; Novič M SAR QSAR Environ Res; 2016 Jul; 27(7):501-19. PubMed ID: 27322761 [TBL] [Abstract][Full Text] [Related]
15. Use of statistical and neural net approaches in predicting toxicity of chemicals. Basak SC; Grunwald GD; Gute BD; Balasubramanian K; Opitz D J Chem Inf Comput Sci; 2000; 40(4):885-90. PubMed ID: 10955514 [TBL] [Abstract][Full Text] [Related]
16. Toxicity of oil sands acid-extractable organic fractions to freshwater fish: Pimephales promelas (fathead minnow) and Oryzias latipes (Japanese medaka). Bauer AE; Frank RA; Headley JV; Peru KM; Farwell AJ; Dixon DG Chemosphere; 2017 Mar; 171():168-176. PubMed ID: 28013078 [TBL] [Abstract][Full Text] [Related]
17. QSTR with extended topochemical atom (ETA) indices. 15. Development of predictive models for toxicity of organic chemicals against fathead minnow using second-generation ETA indices. Roy K; Das RN SAR QSAR Environ Res; 2012 Jan; 23(1-2):125-40. PubMed ID: 22292780 [TBL] [Abstract][Full Text] [Related]
18. A QSAR for baseline toxicity: validation, domain of application, and prediction. Oberg T Chem Res Toxicol; 2004 Dec; 17(12):1630-7. PubMed ID: 15606139 [TBL] [Abstract][Full Text] [Related]
19. MOAtox: A comprehensive mode of action and acute aquatic toxicity database for predictive model development. Barron MG; Lilavois CR; Martin TM Aquat Toxicol; 2015 Apr; 161():102-7. PubMed ID: 25700118 [TBL] [Abstract][Full Text] [Related]
20. Multispecies QSAR modeling for predicting the aquatic toxicity of diverse organic chemicals for regulatory toxicology. Singh KP; Gupta S; Kumar A; Mohan D Chem Res Toxicol; 2014 May; 27(5):741-53. PubMed ID: 24738471 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]