These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Sweet debate: fructose versus glucose in diabetic kidney disease. Beckerman P; Susztak K J Am Soc Nephrol; 2014 Nov; 25(11):2386-8. PubMed ID: 24876119 [No Abstract] [Full Text] [Related]
3. Protective role of fructokinase blockade in the pathogenesis of acute kidney injury in mice. Andres-Hernando A; Li N; Cicerchi C; Inaba S; Chen W; Roncal-Jimenez C; Le MT; Wempe MF; Milagres T; Ishimoto T; Fini M; Nakagawa T; Johnson RJ; Lanaspa MA Nat Commun; 2017 Feb; 8():14181. PubMed ID: 28194018 [TBL] [Abstract][Full Text] [Related]
6. Role of fructose and fructokinase in acute dehydration-induced vasopressin gene expression and secretion in mice. Song 宋志林 Z; Roncal-Jimenez CA; Lanaspa-Garcia MA; Oppelt SA; Kuwabara M; Jensen T; Milagres T; Andres-Hernando A; Ishimoto T; Garcia GE; Johnson G; MacLean PS; Sanchez-Lozada LG; Tolan DR; Johnson RJ J Neurophysiol; 2017 Feb; 117(2):646-654. PubMed ID: 27852737 [TBL] [Abstract][Full Text] [Related]
7. Toll-like receptor 4 promotes tubular inflammation in diabetic nephropathy. Lin M; Yiu WH; Wu HJ; Chan LY; Leung JC; Au WS; Chan KW; Lai KN; Tang SC J Am Soc Nephrol; 2012 Jan; 23(1):86-102. PubMed ID: 22021706 [TBL] [Abstract][Full Text] [Related]
8. Elevated myocardial fructose and sorbitol levels are associated with diastolic dysfunction in diabetic patients, and cardiomyocyte lipid inclusions in vitro. Daniels LJ; Annandale M; Koutsifeli P; Li X; Bussey CT; van Hout I; Bunton RW; Davis PJ; Coffey S; Katare R; Lamberts RR; Delbridge LMD; Mellor KM Nutr Diabetes; 2021 Feb; 11(1):8. PubMed ID: 33558456 [TBL] [Abstract][Full Text] [Related]
9. Diabetic nephropathy is accelerated by farnesoid X receptor deficiency and inhibited by farnesoid X receptor activation in a type 1 diabetes model. Wang XX; Jiang T; Shen Y; Caldas Y; Miyazaki-Anzai S; Santamaria H; Urbanek C; Solis N; Scherzer P; Lewis L; Gonzalez FJ; Adorini L; Pruzanski M; Kopp JB; Verlander JW; Levi M Diabetes; 2010 Nov; 59(11):2916-27. PubMed ID: 20699418 [TBL] [Abstract][Full Text] [Related]
10. The protective role of Smad7 in diabetic kidney disease: mechanism and therapeutic potential. Chen HY; Huang XR; Wang W; Li JH; Heuchel RL; Chung AC; Lan HY Diabetes; 2011 Feb; 60(2):590-601. PubMed ID: 20980457 [TBL] [Abstract][Full Text] [Related]
11. Fructose and uric acid in diabetic nephropathy. Bjornstad P; Lanaspa MA; Ishimoto T; Kosugi T; Kume S; Jalal D; Maahs DM; Snell-Bergeon JK; Johnson RJ; Nakagawa T Diabetologia; 2015 Sep; 58(9):1993-2002. PubMed ID: 26049401 [TBL] [Abstract][Full Text] [Related]
12. Sorbinil suppresses glomerular prostaglandin production in the streptozotocin diabetic rat. Craven PA; DeRubertis FR Metabolism; 1989 Jul; 38(7):649-54. PubMed ID: 2500578 [TBL] [Abstract][Full Text] [Related]
13. Tubular overexpression of Gremlin in transgenic mice aggravates renal damage in diabetic nephropathy. Marchant V; Droguett A; Valderrama G; Burgos ME; Carpio D; Kerr B; Ruiz-Ortega M; Egido J; Mezzano S Am J Physiol Renal Physiol; 2015 Sep; 309(6):F559-68. PubMed ID: 26155842 [TBL] [Abstract][Full Text] [Related]
14. Uric acid activates aldose reductase and the polyol pathway for endogenous fructose and fat production causing development of fatty liver in rats. Sanchez-Lozada LG; Andres-Hernando A; Garcia-Arroyo FE; Cicerchi C; Li N; Kuwabara M; Roncal-Jimenez CA; Johnson RJ; Lanaspa MA J Biol Chem; 2019 Mar; 294(11):4272-4281. PubMed ID: 30651350 [TBL] [Abstract][Full Text] [Related]
15. Fructose increases the activity of sodium hydrogen exchanger in renal proximal tubules that is dependent on ketohexokinase. Hayasaki T; Ishimoto T; Doke T; Hirayama A; Soga T; Furuhashi K; Kato N; Kosugi T; Tsuboi N; Lanaspa MA; Johnson RJ; Maruyama S; Kadomatsu K J Nutr Biochem; 2019 Sep; 71():54-62. PubMed ID: 31276916 [TBL] [Abstract][Full Text] [Related]
16. Connective tissue growth factor in tubulointerstitial injury of diabetic nephropathy. Wang S; Denichilo M; Brubaker C; Hirschberg R Kidney Int; 2001 Jul; 60(1):96-105. PubMed ID: 11422741 [TBL] [Abstract][Full Text] [Related]
17. Opposing effects of fructokinase C and A isoforms on fructose-induced metabolic syndrome in mice. Ishimoto T; Lanaspa MA; Le MT; Garcia GE; Diggle CP; Maclean PS; Jackman MR; Asipu A; Roncal-Jimenez CA; Kosugi T; Rivard CJ; Maruyama S; Rodriguez-Iturbe B; Sánchez-Lozada LG; Bonthron DT; Sautin YY; Johnson RJ Proc Natl Acad Sci U S A; 2012 Mar; 109(11):4320-5. PubMed ID: 22371574 [TBL] [Abstract][Full Text] [Related]
18. Endogenous fructose production and metabolism in the liver contributes to the development of metabolic syndrome. Lanaspa MA; Ishimoto T; Li N; Cicerchi C; Orlicky DJ; Ruzycki P; Rivard C; Inaba S; Roncal-Jimenez CA; Bales ES; Diggle CP; Asipu A; Petrash JM; Kosugi T; Maruyama S; Sanchez-Lozada LG; McManaman JL; Bonthron DT; Sautin YY; Johnson RJ Nat Commun; 2013; 4():2434. PubMed ID: 24022321 [TBL] [Abstract][Full Text] [Related]
19. Fructose Production and Metabolism in the Kidney. Nakagawa T; Johnson RJ; Andres-Hernando A; Roncal-Jimenez C; Sanchez-Lozada LG; Tolan DR; Lanaspa MA J Am Soc Nephrol; 2020 May; 31(5):898-906. PubMed ID: 32253274 [TBL] [Abstract][Full Text] [Related]
20. Dietary fructose causes tubulointerstitial injury in the normal rat kidney. Nakayama T; Kosugi T; Gersch M; Connor T; Sanchez-Lozada LG; Lanaspa MA; Roncal C; Perez-Pozo SE; Johnson RJ; Nakagawa T Am J Physiol Renal Physiol; 2010 Mar; 298(3):F712-20. PubMed ID: 20071464 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]