These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. [Effects of vanadate on glucose metabolism in the lens of rats with streptozotocin-induced diabetes--ketohexokinase and aldolase activity]. Adachi K Nippon Ganka Gakkai Zasshi; 1995 Jan; 99(1):34-9. PubMed ID: 7887327 [TBL] [Abstract][Full Text] [Related]
4. High glucose transactivates the EGF receptor and up-regulates serum glucocorticoid kinase in the proximal tubule. Saad S; Stevens VA; Wassef L; Poronnik P; Kelly DJ; Gilbert RE; Pollock CA Kidney Int; 2005 Sep; 68(3):985-97. PubMed ID: 16105029 [TBL] [Abstract][Full Text] [Related]
5. Expression pattern of apoptosis-inducing factor in the kidneys of streptozotocin-induced diabetic rats. Kostic S; Hauke T; Ghahramani N; Filipovic N; Vukojevic K Acta Histochem; 2020 Dec; 122(8):151655. PubMed ID: 33171392 [TBL] [Abstract][Full Text] [Related]
6. Nutritional and hormonal control of glucose and fructose utilization by lung. Das DK; Neogi A; Steinberg H Clin Physiol Biochem; 1985; 3(5):240-8. PubMed ID: 3902322 [TBL] [Abstract][Full Text] [Related]
7. Deletion of UNC5B in Kidney Epithelium Exacerbates Diabetic Nephropathy in Mice. Ranganathan P; Mohamed R; Jayakumar C; Brands MW; Ramesh G Am J Nephrol; 2015; 41(3):220-30. PubMed ID: 25896231 [TBL] [Abstract][Full Text] [Related]
8. Lysosomal iron accumulation in diabetic nephropathy. Nankivell BJ; Tay YC; Boadle RA; Harris DC Ren Fail; 1994; 16(3):367-81. PubMed ID: 8059020 [TBL] [Abstract][Full Text] [Related]
9. Ketohexokinase-dependent metabolism of fructose induces proinflammatory mediators in proximal tubular cells. Cirillo P; Gersch MS; Mu W; Scherer PM; Kim KM; Gesualdo L; Henderson GN; Johnson RJ; Sautin YY J Am Soc Nephrol; 2009 Mar; 20(3):545-53. PubMed ID: 19158351 [TBL] [Abstract][Full Text] [Related]
10. Dietary fructose causes tubulointerstitial injury in the normal rat kidney. Nakayama T; Kosugi T; Gersch M; Connor T; Sanchez-Lozada LG; Lanaspa MA; Roncal C; Perez-Pozo SE; Johnson RJ; Nakagawa T Am J Physiol Renal Physiol; 2010 Mar; 298(3):F712-20. PubMed ID: 20071464 [TBL] [Abstract][Full Text] [Related]
11. Fructose Production and Metabolism in the Kidney. Nakagawa T; Johnson RJ; Andres-Hernando A; Roncal-Jimenez C; Sanchez-Lozada LG; Tolan DR; Lanaspa MA J Am Soc Nephrol; 2020 May; 31(5):898-906. PubMed ID: 32253274 [TBL] [Abstract][Full Text] [Related]
12. Autophagy Inhibits the Accumulation of Advanced Glycation End Products by Promoting Lysosomal Biogenesis and Function in the Kidney Proximal Tubules. Takahashi A; Takabatake Y; Kimura T; Maejima I; Namba T; Yamamoto T; Matsuda J; Minami S; Kaimori JY; Matsui I; Matsusaka T; Niimura F; Yoshimori T; Isaka Y Diabetes; 2017 May; 66(5):1359-1372. PubMed ID: 28246295 [TBL] [Abstract][Full Text] [Related]
13. Ornithine decarboxylase inhibitor eliminates hyperresponsiveness of the early diabetic proximal tubule to dietary salt. Miracle CM; Rieg T; Mansoury H; Vallon V; Thomson SC Am J Physiol Renal Physiol; 2008 Oct; 295(4):F995-F1002. PubMed ID: 18562630 [TBL] [Abstract][Full Text] [Related]
14. Hyperglycemia and microangiopathy. Direct regulation by glucose of microvascular cells. Kreisberg JI Lab Invest; 1992 Oct; 67(4):416-26. PubMed ID: 1434526 [No Abstract] [Full Text] [Related]
15. Fructose increases the activity of sodium hydrogen exchanger in renal proximal tubules that is dependent on ketohexokinase. Hayasaki T; Ishimoto T; Doke T; Hirayama A; Soga T; Furuhashi K; Kato N; Kosugi T; Tsuboi N; Lanaspa MA; Johnson RJ; Maruyama S; Kadomatsu K J Nutr Biochem; 2019 Sep; 71():54-62. PubMed ID: 31276916 [TBL] [Abstract][Full Text] [Related]
16. Role of O-linked N-acetylglucosamine modification in diabetic nephropathy. Gellai R; Hodrea J; Lenart L; Hosszu A; Koszegi S; Balogh D; Ver A; Banki NF; Fulop N; Molnar A; Wagner L; Vannay A; Szabo AJ; Fekete A Am J Physiol Renal Physiol; 2016 Dec; 311(6):F1172-F1181. PubMed ID: 27029430 [TBL] [Abstract][Full Text] [Related]
17. Hyperglycemia causes cellular senescence via a SGLT2- and p21-dependent pathway in proximal tubules in the early stage of diabetic nephropathy. Kitada K; Nakano D; Ohsaki H; Hitomi H; Minamino T; Yatabe J; Felder RA; Mori H; Masaki T; Kobori H; Nishiyama A J Diabetes Complications; 2014; 28(5):604-11. PubMed ID: 24996978 [TBL] [Abstract][Full Text] [Related]
19. Do tubular changes in the diabetic kidney affect the susceptibility to acute kidney injury? Vallon V Nephron Clin Pract; 2014; 127(1-4):133-8. PubMed ID: 25343837 [TBL] [Abstract][Full Text] [Related]
20. Protein turnover in the hypertrophying kidney. Rabkin R; Shechter P; Shi JD; Boner G Miner Electrolyte Metab; 1996; 22(1-3):153-6. PubMed ID: 8676809 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]