BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 24876391)

  • 1. Defects in the synthetic pathway prevent DIF-1 mediated stalk lineage specification cascade in the non-differentiating social amoeba, Acytostelium subglobosum.
    Mohri K; Hata T; Kikuchi H; Oshima Y; Urushihara H
    Biol Open; 2014 May; 3(6):553-60. PubMed ID: 24876391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temporal and non-permanent division of labor during sorocarp formation in the social amoeba Acytostelium subglobosum.
    Mohri K; Kiyota Y; Kuwayama H; Urushihara H
    Dev Biol; 2013 Mar; 375(2):202-9. PubMed ID: 23313124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative genome and transcriptome analyses of the social amoeba Acytostelium subglobosum that accomplishes multicellular development without germ-soma differentiation.
    Urushihara H; Kuwayama H; Fukuhara K; Itoh T; Kagoshima H; Shin-I T; Toyoda A; Ohishi K; Taniguchi T; Noguchi H; Kuroki Y; Hata T; Uchi K; Mohri K; King JS; Insall RH; Kohara Y; Fujiyama A
    BMC Genomics; 2015 Feb; 16(1):80. PubMed ID: 25758444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cross-species functional complementation of cellulose synthase during the development of cellular slime molds.
    Kuwayama H; Tohyama T; Urushihara H
    Dev Growth Differ; 2014 Sep; 56(7):526-33. PubMed ID: 25208883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of new differentiation inducing factors from Dictyostelium discoideum.
    Saito T; Taylor GW; Yang JC; Neuhaus D; Stetsenko D; Kato A; Kay RR
    Biochim Biophys Acta; 2006 May; 1760(5):754-61. PubMed ID: 16545913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Universal signals control slime mold stalk formation.
    van Es S; Nieuwenhuijsen BW; Lenouvel F; van Deursen EM; Schaap P
    Proc Natl Acad Sci U S A; 1994 Aug; 91(17):8219-23. PubMed ID: 8058783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of des-methyl-DIF-1 methyltransferase in Dictyostelium purpureum.
    Motohashi KA; Morita N; Kato A; Saito T
    Biosci Biotechnol Biochem; 2012; 76(9):1672-6. PubMed ID: 22972328
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Derivatives of Differentiation-Inducing Factor 1 Differentially Control Chemotaxis and Stalk Cell Differentiation in
    Kuwayama H; Kikuchi H; Kubohara Y
    Biology (Basel); 2023 Jun; 12(6):. PubMed ID: 37372157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracellular pH and the control of cell differentiation in Dictyostelium discoideum.
    Gross JD; Bradbury J; Kay RR; Peacey MJ
    Nature; 1983 May 19-25; 303(5914):244-5. PubMed ID: 6843673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diffusible signal molecules controlling cell differentiation and patterning in Dictyostelium.
    Berks M; Traynor D; Carrin I; Insall RH; Kay RR
    Dev Suppl; 1991; 1():131-9. PubMed ID: 1660326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differentiation-inducing factor from the slime mould Dictyostelium discoideum and its analogues. Synthesis, structure and biological activity.
    Masento MS; Morris HR; Taylor GW; Johnson SJ; Skapski AC; Kay RR
    Biochem J; 1988 Nov; 256(1):23-8. PubMed ID: 3223901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glutathione S-transferase 4 is a putative DIF-binding protein that regulates the size of fruiting bodies in
    Kuwayama H; Kikuchi H; Oshima Y; Kubohara Y
    Biochem Biophys Rep; 2016 Dec; 8():219-226. PubMed ID: 28955959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolutionary reconstruction of pattern formation in 98 Dictyostelium species reveals that cell-type specialization by lateral inhibition is a derived trait.
    Schilde C; Skiba A; Schaap P
    Evodevo; 2014; 5():34. PubMed ID: 25904998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolution of stalk/spore ratio in a social amoeba: cell-to-cell interaction via a signaling chemical shaped by cheating risk.
    Uchinomiya K; Iwasa Y
    J Theor Biol; 2013 Nov; 336():110-8. PubMed ID: 23911583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generating polyketide diversity in
    Saito T; Iijima T; Koyama K; Shinagawa T; Yamanaka A; Araki T; Suzuki N; Usuki T; Kay RR
    Proc Biol Sci; 2022 Sep; 289(1983):20221176. PubMed ID: 36126683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence that differentiation-inducing factor-1 controls chemotaxis and cell differentiation, at least in part, via mitochondria in
    Kubohara Y; Kikuchi H; Nguyen VH; Kuwayama H; Oshima Y
    Biol Open; 2017 Jun; 6(6):741-751. PubMed ID: 28619991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Specific induction by zinc of Dictyostelium stalk cell differentiation.
    Kubohara Y; Okamoto K
    Exp Cell Res; 1994 Sep; 214(1):367-72. PubMed ID: 8082740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fruiting bodies of the social amoeba Dictyostelium discoideum increase spore transport by Drosophila.
    Smith J; Queller DC; Strassmann JE
    BMC Evol Biol; 2014 May; 14():105. PubMed ID: 24884856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cancer and the breakdown of multicellularity: What Dictyostelium discoideum, a social amoeba, can teach us.
    Mathavarajah S; VanIderstine C; Dellaire G; Huber RJ
    Bioessays; 2021 Apr; 43(4):e2000156. PubMed ID: 33448043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Loss of the Polyketide Synthase StlB Results in Stalk Cell Overproduction in Polysphondylium violaceum.
    Narita TB; Kawabe Y; Kin K; Gibbs RA; Kuspa A; Muzny DM; Richards S; Strassmann JE; Sucgang R; Worley KC; Schaap P
    Genome Biol Evol; 2020 May; 12(5):674-683. PubMed ID: 32386295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.