These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 2487643)

  • 1. Conservation of receptive-field properties of superior colliculus cells after developmental rearrangements of retinal input.
    Pallas SL; Finlay BL
    Vis Neurosci; 1989; 2(2):121-35. PubMed ID: 2487643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NMDA antagonists in the superior colliculus prevent developmental plasticity but not visual transmission or map compression.
    Huang L; Pallas SL
    J Neurophysiol; 2001 Sep; 86(3):1179-94. PubMed ID: 11535668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compensation for population size mismatches in the hamster retinotectal system: alterations in the organization of retinal projections.
    Pallas SL; Finlay BL
    Vis Neurosci; 1991 Mar; 6(3):271-81. PubMed ID: 2054328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of neonatal enucleation on receptive-field properties of visual neurons in superior colliculus of the golden hamster.
    Rhoades RW; Chalupa LM
    J Neurophysiol; 1980 Mar; 43(3):595-611. PubMed ID: 7373351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of prenatal and neonatal monocular enucleation on visual topography in the uncrossed retinal pathway to the rat superior colliculus.
    Jeffery G; Thompson ID
    Exp Brain Res; 1986; 63(2):351-63. PubMed ID: 3758252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visual receptive fields and their images in superior colliculus of the cat.
    McIlwain JT
    J Neurophysiol; 1975 Mar; 38(2):219-30. PubMed ID: 1092813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of receptive-field organization of the superior colliculus in Siamese and normal cats.
    Berman N; Cynader M
    J Physiol; 1972 Jul; 224(2):363-89. PubMed ID: 5071401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NMDA receptor blockade in the superior colliculus increases receptive field size without altering velocity and size tuning.
    Razak KA; Huang L; Pallas SL
    J Neurophysiol; 2003 Jul; 90(1):110-9. PubMed ID: 12611963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Consequences of axon guidance defects on the development of retinotopic receptive fields in the mouse colliculus.
    Chandrasekaran AR; Furuta Y; Crair MC
    J Physiol; 2009 Mar; 587(Pt 5):953-63. PubMed ID: 19153163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dark rearing reveals the mechanism underlying stimulus size tuning of superior colliculus neurons.
    Razak KA; Pallas SL
    Vis Neurosci; 2006; 23(5):741-8. PubMed ID: 17020630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of altered visual input upon the development of the visual and somatosensory representations in the hamster's superior colliculus.
    Mooney RD; Klein BG; Rhoades RW
    Neuroscience; 1987 Feb; 20(2):537-55. PubMed ID: 3587609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of cell number in the developing visual system. II. Effects of partial tectal ablation.
    Wikler KC; Kirn J; Windrem MS; Finlay BL
    Brain Res; 1986 Jul; 393(1):11-21. PubMed ID: 3730888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aberrant retinal projections to midbrain targets mediate spared visual orienting function in hamsters with neonatal lesions of superior colliculus.
    Carman LS; Schneider GE
    Exp Brain Res; 1992; 90(1):92-102. PubMed ID: 1521619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Y-cell receptive field and collicular projection of parasol ganglion cells in macaque monkey retina.
    Crook JD; Peterson BB; Packer OS; Robinson FR; Troy JB; Dacey DM
    J Neurosci; 2008 Oct; 28(44):11277-91. PubMed ID: 18971470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anomalous ipsilateral retinotectal projections in Syrian hamsters with early lesions: topography and functional capacity.
    Finlay BL; Wilson KG; Schneider GE
    J Comp Neurol; 1979 Feb; 183(4):721-40. PubMed ID: 762269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasticity in the developing visual system: the effects of retinal lesions made in young rats.
    Lund RD; Lund JS
    J Comp Neurol; 1976 Sep; 169(2):133-54. PubMed ID: 61210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compressed retinotectal projection in hamsters: fewer ganglion cells project to tectum after neonatal tectal lesions.
    Udin SB; Schneider GE
    Exp Brain Res; 1981; 43(3-4):261-9. PubMed ID: 7262223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for an instructive role of retinal activity in retinotopic map refinement in the superior colliculus of the mouse.
    Chandrasekaran AR; Plas DT; Gonzalez E; Crair MC
    J Neurosci; 2005 Jul; 25(29):6929-38. PubMed ID: 16033903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Retinal afferents innervate functionally tectal but not neocortical grafts placed in lesioned superior colliculus of adult rats.
    Girman SV
    Brain Res; 1993 Apr; 607(1-2):167-76. PubMed ID: 8481793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Indirect, across-the-midline retinotectal projections and representation of ipsilateral visual field in superior colliculus of the cat.
    Antonini A; Berlucchi G; Sprague JM
    J Neurophysiol; 1978 Mar; 41(2):285-304. PubMed ID: 650268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.