These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 24877017)

  • 1. Optimal lens design and use in laser-scanning microscopy.
    Negrean A; Mansvelder HD
    Biomed Opt Express; 2014 May; 5(5):1588-609. PubMed ID: 24877017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of intermediary scan-lens and tube-lens mechanisms for optical coherence tomography.
    Atry F; Pashaie R
    Appl Opt; 2016 Feb; 55(4):646-53. PubMed ID: 26836064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of high-performance adaptive objective lens with large optical depth scanning range for ultrabroad near infrared microscopic imaging.
    Lan G; Mauger TF; Li G
    Biomed Opt Express; 2015 Sep; 6(9):3362-77. PubMed ID: 26417508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wide field-of-view volumetric imaging by a mesoscopic scanning oblique plane microscopy with switchable objective lenses.
    Shao W; Kilic K; Yin W; Wirak G; Qin X; Feng H; Boas D; Gabel CV; Yi J
    Quant Imaging Med Surg; 2021 Mar; 11(3):983-997. PubMed ID: 33654671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical design and imaging performance testing of a 9.6-mm diameter femtosecond laser microsurgery probe.
    Hoy CL; Ferhanoğlu O; Yildirim M; Piyawattanametha W; Ra H; Solgaard O; Ben-Yakar A
    Opt Express; 2011 May; 19(11):10536-52. PubMed ID: 21643308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Field curvature reduction in miniaturized high numerical aperture and large field-of-view objective lenses with sub 1 µm lateral resolution.
    Stark SL; Gross H; Reglinski K; Messerschmidt B; Eggeling C
    Biomed Opt Express; 2023 Dec; 14(12):6190-6205. PubMed ID: 38420300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wide-band acousto-optic deflectors for large field of view two-photon microscope.
    Jiang R; Zhou Z; Lv X; Zeng S
    Rev Sci Instrum; 2012 Apr; 83(4):043709. PubMed ID: 22559541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduction of spherical and chromatic aberration in axial-scanning optical systems with tunable lenses.
    Strother JA
    Biomed Opt Express; 2021 Jun; 12(6):3530-3552. PubMed ID: 34221677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Achromatic miniature lens system for coherent Raman scattering microscopy.
    Mittal R; Balu M; Wilder-Smith P; Potma EO
    Biomed Opt Express; 2013; 4(10):2196-206. PubMed ID: 24156075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Video-rate scanning confocal microscopy and microendoscopy.
    Nichols AJ; Evans CL
    J Vis Exp; 2011 Oct; (56):. PubMed ID: 22042305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Designing a large field-of-view two-photon microscope using optical invariant analysis.
    Bumstead JR; Park JJ; Rosen IA; Kraft AW; Wright PW; Reisman MD; Côté DC; Culver JP
    Neurophotonics; 2018 Apr; 5(2):025001. PubMed ID: 29487876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Color calibration and fusion of lens-free and mobile-phone microscopy images for high-resolution and accurate color reproduction.
    Zhang Y; Wu Y; Zhang Y; Ozcan A
    Sci Rep; 2016 Jun; 6():27811. PubMed ID: 27283459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-speed 3-D measurement with a large field of view based on direct-view confocal microscope with an electrically tunable lens.
    Jeong HJ; Yoo H; Gweon D
    Opt Express; 2016 Feb; 24(4):3806-16. PubMed ID: 26907034
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nontranslational three-dimensional profilometry by chromatic confocal microscopy with dynamically configurable micromirror scanning.
    Cha S; Lin PC; Zhu L; Sun PC; Fainman Y
    Appl Opt; 2000 Jun; 39(16):2605-13. PubMed ID: 18345178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Confocal fluorescence microscopy with high-NA diffractive lens arrays.
    Li Z; Taphanel M; Längle T; Beyerer J
    Appl Opt; 2022 Jan; 61(3):A37-A42. PubMed ID: 35200764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of axial scanning range and magnification variation in wide-field microscope for measurement using an electrically tunable lens.
    Qu Y; Hu Y
    Microsc Res Tech; 2019 Feb; 82(2):101-113. PubMed ID: 30451353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Meta-Lens Doublet in the Visible Region.
    Groever B; Chen WT; Capasso F
    Nano Lett; 2017 Aug; 17(8):4902-4907. PubMed ID: 28661676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and realization of a wide field of view infrared scanning system with an integrated micro-electromechanical system mirror.
    Zhu C; Hobbs MJ; Grainger MP; Willmott JR
    Appl Opt; 2018 Dec; 57(36):10449-10457. PubMed ID: 30645388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nyquist-exceeding high voxel rate acquisition in mesoscopic multiphoton microscopy for full-field submicron resolution resolvability.
    Borah BJ; Lee JC; Chi HH; Hsiao YT; Yen CT; Sun CK
    iScience; 2021 Sep; 24(9):103041. PubMed ID: 34585109
    [TBL] [Abstract][Full Text] [Related]  

  • 20. User-friendly oblique plane microscopy on a fully functional commercially available microscope base.
    Sirinakis G; Allgeyer ES; Nashchekin D; St Johnston D
    Biomed Opt Express; 2024 Apr; 15(4):2358-2376. PubMed ID: 38633100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.