These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 24877020)
1. Fabricating low cost and high performance elastomer lenses using hanging droplets. Lee WM; Upadhya A; Reece PJ; Phan TG Biomed Opt Express; 2014 May; 5(5):1626-35. PubMed ID: 24877020 [TBL] [Abstract][Full Text] [Related]
2. Fabrication of miniature elastomer lenses with programmable liquid mold for smartphone microscopy: curing polydimethylsiloxane with in situ curvature control. Karunakaran B; Tharion J; Dhawangale AR; Paul D; Mukherji S J Biomed Opt; 2018 Feb; 23(2):1-14. PubMed ID: 29453846 [TBL] [Abstract][Full Text] [Related]
3. Fabricating optical lenses by inkjet printing and heat-assisted in situ curing of polydimethylsiloxane for smartphone microscopy. Sung YL; Jeang J; Lee CH; Shih WC J Biomed Opt; 2015 Apr; 20(4):047005. PubMed ID: 25901657 [TBL] [Abstract][Full Text] [Related]
4. In situ retrieval and correction of aberrations in moldless lenses using Fourier ptychography. Kamal T; Yang L; Lee WM Opt Express; 2018 Feb; 26(3):2708-2719. PubMed ID: 29401807 [TBL] [Abstract][Full Text] [Related]
5. Moldless Printing of Silicone Lenses With Embedded Nanostructured Optical Filters. Mariani S; Robbiano V; Iglio R; La Mattina AA; Nadimi P; Wang J; Kim B; Kumeria T; Sailor MJ; Barillaro G Adv Funct Mater; 2020 Jan; 30(4):. PubMed ID: 32377177 [TBL] [Abstract][Full Text] [Related]
8. Low-cost 3D printed lenses for brightfield and fluorescence microscopy. Christopher J; Rooney LM; Donnachie M; Uttamchandani D; McConnell G; Bauer R Biomed Opt Express; 2024 Apr; 15(4):2224-2237. PubMed ID: 38633069 [TBL] [Abstract][Full Text] [Related]
9. Design of a 3D printed smartphone microscopic system with enhanced imaging ability for biomedical applications. Rabha D; Sarmah A; Nath P J Microsc; 2019 Oct; 276(1):13-20. PubMed ID: 31498428 [TBL] [Abstract][Full Text] [Related]
10. Biomimetic human eyes in adaptive lenses with conductive gels. Zhang H; Zhu J; Wen H; Xia Z; Zhang Z J Mech Behav Biomed Mater; 2023 Mar; 139():105689. PubMed ID: 36739668 [TBL] [Abstract][Full Text] [Related]
11. [Fabrication and Performance Study of Polydimethylsiloxane Intraocular Lens]. Du Q; Yu Y Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2016 Oct; 33(5):896-902. PubMed ID: 29714942 [TBL] [Abstract][Full Text] [Related]
12. Fabrication and Characterization of Flexible Electrowetting on Dielectrics (EWOD) Microlens. Li C; Jiang H Micromachines (Basel); 2014 Jul; 5(3):432-441. PubMed ID: 25360324 [TBL] [Abstract][Full Text] [Related]
13. Novel dual-function lens with microscopic and vari-focus capability incorporated with an aberration-suppression aspheric lens. Fuh YK; Chen PW Opt Express; 2015 Aug; 23(17):21771-85. PubMed ID: 26368154 [TBL] [Abstract][Full Text] [Related]
15. A lab-on-phone instrument with varifocal microscope via a liquid-actuated aspheric lens (LAL). Fuh YK; Lai ZH; Kau LH; Huang HJ PLoS One; 2017; 12(6):e0179389. PubMed ID: 28650971 [TBL] [Abstract][Full Text] [Related]
16. Design and fabrication of a copolymer aspheric bi-convex lens utilizing thermal energy and electrostatic force in a dynamic fluidic. Hung KY; Fan CC; Tseng FG; Chen YK Opt Express; 2010 Mar; 18(6):6014-23. PubMed ID: 20389621 [TBL] [Abstract][Full Text] [Related]
17. High-resolution cost-effective compact portable inverted light microscope. Purwar P; Han S; Lee Y; Saha B; Sandhan T; Lee J J Microsc; 2019 Mar; 273(3):199-209. PubMed ID: 30561003 [TBL] [Abstract][Full Text] [Related]
19. Fabrication of a bionic compound eye on a curved surface by using a self-assembly technique. Xu M; Li S; Li J; Zhang L; Lu H Opt Express; 2022 Aug; 30(17):30750-30759. PubMed ID: 36242173 [TBL] [Abstract][Full Text] [Related]