These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 24877213)

  • 1. Intersaccadic drift velocity is sensitive to short-term hypobaric hypoxia.
    Di Stasi LL; Cabestrero R; McCamy MB; Ríos F; Catena A; Quirós P; Lopez JA; Saez C; Macknik SL; Martinez-Conde S
    Eur J Neurosci; 2014 Apr; 39(8):1384-90. PubMed ID: 24877213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of long and short simulated flights on the saccadic eye movement velocity of aviators.
    Di Stasi LL; McCamy MB; Martinez-Conde S; Gayles E; Hoare C; Foster M; Catena A; Macknik SL
    Physiol Behav; 2016 Jan; 153():91-6. PubMed ID: 26597121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fatigue in the military: towards a fatigue detection test based on the saccadic velocity.
    Diaz-Piedra C; Rieiro H; Suárez J; Rios-Tejada F; Catena A; Di Stasi LL
    Physiol Meas; 2016 Sep; 37(9):N62-75. PubMed ID: 27531394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flight Performance During Exposure to Acute Hypobaric Hypoxia.
    Steinman Y; van den Oord MHAH; Frings-Dresen MHW; Sluiter JK
    Aerosp Med Hum Perform; 2017 Aug; 88(8):760-767. PubMed ID: 28720186
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microsaccade and drift dynamics reflect mental fatigue.
    Di Stasi LL; McCamy MB; Catena A; Macknik SL; Cañas JJ; Martinez-Conde S
    Eur J Neurosci; 2013 Aug; 38(3):2389-98. PubMed ID: 23675850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Saccadic eye movement metrics reflect surgical residents' fatigue.
    Di Stasi LL; McCamy MB; Macknik SL; Mankin JA; Hooft N; Catena A; Martinez-Conde S
    Ann Surg; 2014 Apr; 259(4):824-9. PubMed ID: 24169184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of hypobaric hypoxia on postural control.
    Nordahl SH; Aasen T; Owe JO; Molvaer OI
    Aviat Space Environ Med; 1998 Jun; 69(6):590-5. PubMed ID: 9641406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PERCLOS as an Indicator of Slow-Onset Hypoxia in Aviation.
    Thropp JE; Scallon JFV; Buza P
    Aerosp Med Hum Perform; 2018 Aug; 89(8):700-707. PubMed ID: 30020054
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acute Mild Hypoxic Hypoxia Effects on Cognitive and Simulated Aircraft Pilot Performance.
    Bouak F; Vartanian O; Hofer K; Cheung B
    Aerosp Med Hum Perform; 2018 Jun; 89(6):526-535. PubMed ID: 29789086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Abnormalities of ocular motility in myotonic dystrophy.
    Anastasopoulos D; Kimmig H; Mergner T; Psilas K
    Brain; 1996 Dec; 119 ( Pt 6)():1923-32. PubMed ID: 9009998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visually induced adaptive changes in primate saccadic oculomotor control signals.
    Optican LM; Miles FA
    J Neurophysiol; 1985 Oct; 54(4):940-58. PubMed ID: 4067628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Eye movements between saccades: Measuring ocular drift and tremor.
    Ko HK; Snodderly DM; Poletti M
    Vision Res; 2016 May; 122():93-104. PubMed ID: 27068415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Eye- and head movements in freely moving rabbits.
    Collewijn H
    J Physiol; 1977 Apr; 266(2):471-98. PubMed ID: 857007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cerebellar-dependent adaptive control of primate saccadic system.
    Optican LM; Robinson DA
    J Neurophysiol; 1980 Dec; 44(6):1058-76. PubMed ID: 7452323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hypoxia and Coriolis Illusion in Pilots During Simulated Flight.
    Kowalczuk KP; Gazdzinski SP; Janewicz M; Gąsik M; Lewkowicz R; Wyleżoł M
    Aerosp Med Hum Perform; 2016 Feb; 87(2):108-13. PubMed ID: 26802375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heart rate nonlinear dynamics during sudden hypoxia at 8230 m simulated altitude.
    Vigo DE; Pérez Lloret S; Videla AJ; Pérez Chada D; Hünicken HM; Mercuri J; Romero R; Nicola Siri LC; Cardinali DP
    Wilderness Environ Med; 2010 Mar; 21(1):4-10. PubMed ID: 20591347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In-flight hypoxia incidents in military aircraft: causes and implications for training.
    Cable GG
    Aviat Space Environ Med; 2003 Feb; 74(2):169-72. PubMed ID: 12602449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Depressurization in military aircraft: rates, rapidity, and health effects for 1055 incidents.
    Files DS; Webb JT; Pilmanis AA
    Aviat Space Environ Med; 2005 Jun; 76(6):523-9. PubMed ID: 15945394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fatiguing effect of multiple take-offs and landings in regional airline operations.
    Honn KA; Satterfield BC; McCauley P; Caldwell JL; Van Dongen HP
    Accid Anal Prev; 2016 Jan; 86():199-208. PubMed ID: 26590506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dry-EEG Manifestations of Acute and Insidious Hypoxia During Simulated Flight.
    Rice GM; Snider D; Drollinger S; Greil C; Bogni F; Phillips J; Raj A; Marco K; Linnville S
    Aerosp Med Hum Perform; 2019 Feb; 90(2):92-100. PubMed ID: 30670118
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.