These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 24877582)

  • 1. A new multichannel time reversal focusing method for circumferential Lamb waves and its applications for defect detection in thick-walled pipe with large-diameter.
    Liu Z; Xu Q; Gong Y; He C; Wu B
    Ultrasonics; 2014 Sep; 54(7):1967-76. PubMed ID: 24877582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Natural beam focusing of non-axisymmetric guided waves in large-diameter pipes.
    Li J; Rose JL
    Ultrasonics; 2006 Jan; 44(1):35-45. PubMed ID: 16182330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Circumferential SH Wave Piezoelectric Transducer System for Monitoring Corrosion-Like Defect in Large-Diameter Pipes.
    Zhang H; Du Y; Tang J; Kang G; Miao H
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31947547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The application of synthetic focusing for imaging crack-like defects in pipelines using guided waves.
    Davies J; Cawley P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Apr; 56(4):759-71. PubMed ID: 19406704
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time reversal technique for health monitoring of metallic structure using Lamb waves.
    Gangadharan R; Murthy CR; Gopalakrishnan S; Bhat MR
    Ultrasonics; 2009 Dec; 49(8):696-705. PubMed ID: 19539965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Damage localization method for plates based on the time reversal of the mode-converted Lamb waves.
    Mori N; Biwa S; Kusaka T
    Ultrasonics; 2019 Jan; 91():19-29. PubMed ID: 30031966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wideband dispersion reversal of lamb waves.
    Xu K; Ta D; Hu B; Laugier P; Wang W
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Jun; 61(6):997-1005. PubMed ID: 24859663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of fatigue-induced micro-cracks in a pipe by using time-reversed nonlinear guided waves: a three-dimensional model study.
    Guo X; Zhang D; Zhang J
    Ultrasonics; 2012 Sep; 52(7):912-9. PubMed ID: 22429813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Excitation and scattering of guided waves: relationships between solutions for plates and pipes.
    Velichko A; Wilcox PD
    J Acoust Soc Am; 2009 Jun; 125(6):3623-31. PubMed ID: 19507944
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dispersion compensation in Lamb wave defect detection with step-pulse excitation and warped frequency transform.
    Fu S; Shi L; Zhou Y; Cai J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Dec; 61(12):2075-88. PubMed ID: 25474782
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pipe wall damage detection by electromagnetic acoustic transducer generated guided waves in absence of defect signals.
    Vasiljevic M; Kundu T; Grill W; Twerdowski E
    J Acoust Soc Am; 2008 May; 123(5):2591-7. PubMed ID: 18529178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of a Partially Covered AM-MPT and Its Application to Damage Scans of Small Diameter Pipes Based on Analysis of the Beam Directivity of the MHz Lamb Wave.
    Fang Z; Tse PW; Fan X
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Dec; 67(12):2717-2730. PubMed ID: 32746217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deconvolution imaging of weak reflective pipe defects using guided-wave signals captured by a scanning receiver.
    Sun Z; Sun A; Ju BF
    Rev Sci Instrum; 2017 Feb; 88(2):024904. PubMed ID: 28249510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Circumferential phased array of shear-horizontal wave magnetostrictive patch transducers for pipe inspection.
    Kim HW; Lee JK; Kim YY
    Ultrasonics; 2013 Feb; 53(2):423-31. PubMed ID: 22925267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterisation of hidden defects using the near-field ultrasonic enhancement of Lamb waves.
    Clough AR; Edwards RS
    Ultrasonics; 2015 May; 59():64-71. PubMed ID: 25682295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lamb wave tomography of pipe-like structures.
    Leonard KR; Hinders MK
    Ultrasonics; 2005 Jun; 43(7):574-83. PubMed ID: 15950033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Defect imaging with guided waves in a pipe.
    Hayashi T; Murase M
    J Acoust Soc Am; 2005 Apr; 117(4 Pt 1):2134-40. PubMed ID: 15898654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Circumferential and longitudinal defect detection using T(0,1) mode excited by thickness shear mode piezoelectric elements.
    Liu Z; He C; Wu B; Wang X; Yang S
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1135-8. PubMed ID: 17064749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasonic guided wave parameters for detection of axial cracks in feeder pipes of PHWR nuclear power plants.
    Cheong YM; Lee DH; Jung HK
    Ultrasonics; 2004 Apr; 42(1-9):883-8. PubMed ID: 15047401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of pressurization on helical guided wave energy velocity in fluid-filled pipes.
    Dubuc B; Ebrahimkhanlou A; Salamone S
    Ultrasonics; 2017 Mar; 75():145-154. PubMed ID: 27951503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.