BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 24877752)

  • 1. Self-assembly of cyclo-diphenylalanine peptides in vacuum.
    Jeon J; Shell MS
    J Phys Chem B; 2014 Jun; 118(24):6644-52. PubMed ID: 24877752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Triphenylalanine peptides self-assemble into nanospheres and nanorods that are different from the nanovesicles and nanotubes formed by diphenylalanine peptides.
    Guo C; Luo Y; Zhou R; Wei G
    Nanoscale; 2014 Mar; 6(5):2800-11. PubMed ID: 24468750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular insights into diphenylalanine nanotube assembly: all-atom simulations of oligomerization.
    Jeon J; Mills CE; Shell MS
    J Phys Chem B; 2013 Apr; 117(15):3935-43. PubMed ID: 23521630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural Polymorphism in a Self-Assembled Tri-Aromatic Peptide System.
    Brown N; Lei J; Zhan C; Shimon LJW; Adler-Abramovich L; Wei G; Gazit E
    ACS Nano; 2018 Apr; 12(4):3253-3262. PubMed ID: 29558116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformational dynamics and aggregation behavior of piezoelectric diphenylalanine peptides in an external electric field.
    Kelly CM; Northey T; Ryan K; Brooks BR; Kholkin AL; Rodriguez BJ; Buchete NV
    Biophys Chem; 2015 Jan; 196():16-24. PubMed ID: 25240398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-assembly of diphenylalanine peptides on graphene
    Rissanou AN; Keliri A; Arnittali M; Harmandaris V
    Phys Chem Chem Phys; 2020 Dec; 22(47):27645-27657. PubMed ID: 33283818
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformation Dependence of Diphenylalanine Self-Assembly Structures and Dynamics: Insights from Hybrid-Resolution Simulations.
    Xiong Q; Jiang Y; Cai X; Yang F; Li Z; Han W
    ACS Nano; 2019 Apr; 13(4):4455-4468. PubMed ID: 30869864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing the self-assembly mechanism of diphenylalanine-based peptide nanovesicles and nanotubes.
    Guo C; Luo Y; Zhou R; Wei G
    ACS Nano; 2012 May; 6(5):3907-18. PubMed ID: 22468743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of pH on the self-assembly of diphenylalanine peptides: molecular insights from coarse-grained simulations.
    Wang Y; Wang K; Zhao X; Xu X; Sun T
    Soft Matter; 2023 Aug; 19(30):5749-5757. PubMed ID: 37462931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expanding the structural diversity of peptide assemblies by coassembling dipeptides with diphenylalanine.
    Tang Y; Yao Y; Wei G
    Nanoscale; 2020 Feb; 12(5):3038-3049. PubMed ID: 31971529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of solvent on the self-assembly of dialanine and diphenylalanine peptides.
    Rissanou AN; Georgilis E; Kasotakis E; Mitraki A; Harmandaris V
    J Phys Chem B; 2013 Apr; 117(15):3962-75. PubMed ID: 23510047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-assembly of phenylalanine oligopeptides: insights from experiments and simulations.
    Tamamis P; Adler-Abramovich L; Reches M; Marshall K; Sikorski P; Serpell L; Gazit E; Archontis G
    Biophys J; 2009 Jun; 96(12):5020-9. PubMed ID: 19527662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Initial Aggregation and Ordering Mechanism of Diphenylalanine from Microsecond All-Atom Molecular Dynamics Simulations.
    Anderson J; Lake PT; McCullagh M
    J Phys Chem B; 2018 Dec; 122(51):12331-12341. PubMed ID: 30511861
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamics of Polypeptide Supramolecular Assembly in the Short-Chain Limit.
    Mason TO; Michaels TCT; Levin A; Dobson CM; Gazit E; Knowles TPJ; Buell AK
    J Am Chem Soc; 2017 Nov; 139(45):16134-16142. PubMed ID: 28994295
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoluminescence of Diphenylalanine Peptide Nano/Microstructures: From Mechanisms to Applications.
    Gan Z; Xu H
    Macromol Rapid Commun; 2017 Nov; 38(22):. PubMed ID: 28902961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hierarchical, interface-induced self-assembly of diphenylalanine: formation of peptide nanofibers and microvesicles.
    Huang R; Su R; Qi W; Zhao J; He Z
    Nanotechnology; 2011 Jun; 22(24):245609. PubMed ID: 21543826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amphiphilic Peptides A6K and V6K Display Distinct Oligomeric Structures and Self-Assembly Dynamics: A Combined All-Atom and Coarse-Grained Simulation Study.
    Sun Y; Qian Z; Guo C; Wei G
    Biomacromolecules; 2015 Sep; 16(9):2940-9. PubMed ID: 26301845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-Assembly of Tetraphenylalanine Peptides.
    Mayans E; Ballano G; Casanovas J; Díaz A; Pérez-Madrigal MM; Estrany F; Puiggalí J; Cativiela C; Alemán C
    Chemistry; 2015 Nov; 21(47):16895-905. PubMed ID: 26419936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of water molecules on the electronic and structural properties of peptide nanotubes.
    Andrade-Filho T; Ferreira FF; Alves WA; Rocha AR
    Phys Chem Chem Phys; 2013 May; 15(20):7555-9. PubMed ID: 23588391
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular modeling and computational study of the chiral-dependent structures and properties of the self-assembling diphenylalanine peptide nanotubes, containing water molecules.
    Bystrov VS; Coutinho J; Zelenovskiy PS; Nuraeva AS; Kopyl S; Filippov SV; Zhulyabina OA; Tverdislov VA
    J Mol Model; 2020 Nov; 26(11):326. PubMed ID: 33140163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.