BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1922 related articles for article (PubMed ID: 24877821)

  • 1. Improved image quality of cone beam CT scans for radiotherapy image guidance using fiber-interspaced antiscatter grid.
    Stankovic U; van Herk M; Ploeger LS; Sonke JJ
    Med Phys; 2014 Jun; 41(6):061910. PubMed ID: 24877821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimal combination of anti-scatter grids and software correction for CBCT imaging.
    Stankovic U; Ploeger LS; van Herk M; Sonke JJ
    Med Phys; 2017 Sep; 44(9):4437-4451. PubMed ID: 28556204
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D-printed large-area focused grid for scatter reduction in cone-beam CT.
    Cobos SF; Norley CJ; Nikolov HN; Holdsworth DW
    Med Phys; 2023 Jan; 50(1):240-258. PubMed ID: 36215176
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of scatter rejection and correction performance of 2D antiscatter grids in cone beam computed tomography.
    Park Y; Alexeev T; Miller B; Miften M; Altunbas C
    Med Phys; 2021 Apr; 48(4):1846-1858. PubMed ID: 33554377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antiscatter grids in mobile C-arm cone-beam CT: effect on image quality and dose.
    Schafer S; Stayman JW; Zbijewski W; Schmidgunst C; Kleinszig G; Siewerdsen JH
    Med Phys; 2012 Jan; 39(1):153-9. PubMed ID: 22225284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combining scatter reduction and correction to improve image quality in cone-beam computed tomography (CBCT).
    Jin JY; Ren L; Liu Q; Kim J; Wen N; Guan H; Movsas B; Chetty IJ
    Med Phys; 2010 Nov; 37(11):5634-44. PubMed ID: 21158275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shading correction for on-board cone-beam CT in radiation therapy using planning MDCT images.
    Niu T; Sun M; Star-Lack J; Gao H; Fan Q; Zhu L
    Med Phys; 2010 Oct; 37(10):5395-406. PubMed ID: 21089775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of image quality for different kV cone-beam CT acquisition and reconstruction methods in the head and neck region.
    Elstrøm UV; Muren LP; Petersen JB; Grau C
    Acta Oncol; 2011 Aug; 50(6):908-17. PubMed ID: 21767191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scatter Reduction and Correction for Dual-Source Cone-Beam CT Using Prepatient Grids.
    Ren L; Chen Y; Zhang Y; Giles W; Jin J; Yin FF
    Technol Cancer Res Treat; 2016 Jun; 15(3):416-27. PubMed ID: 26009495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feasibility study of a synchronized-moving-grid (SMOG) system to improve image quality in cone-beam computed tomography (CBCT).
    Ren L; Yin FF; Chetty IJ; Jaffray DA; Jin JY
    Med Phys; 2012 Aug; 39(8):5099-110. PubMed ID: 22894435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-dimensional antiscatter grid: A novel scatter rejection device for Cone-beam computed tomography.
    Alexeev T; Kavanagh B; Miften M; Altunbas C
    Med Phys; 2018 Feb; 45(2):529-534. PubMed ID: 29235120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The impact of CBCT reconstruction and calibration for radiotherapy planning in the head and neck region - a phantom study.
    Elstrøm UV; Olsen SR; Muren LP; Petersen JB; Grau C
    Acta Oncol; 2014 Aug; 53(8):1114-24. PubMed ID: 24975372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of antiscatter grids on soft-tissue detectability in cone-beam computed tomography with flat-panel detectors.
    Siewerdsen JH; Moseley DJ; Bakhtiar B; Richard S; Jaffray DA
    Med Phys; 2004 Dec; 31(12):3506-20. PubMed ID: 15651634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of soft-tissue contrast in cone-beam CT using an anti-scatter grid with a sparse sampling approach.
    Cho S; Lim S; Kim C; Wi S; Kwon T; Youn WS; Lee SH; Kang BS; Cho S
    Phys Med; 2020 Feb; 70():1-9. PubMed ID: 31931280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of a prototype rapid kilovoltage x-ray image guidance system designed for a ring shape radiation therapy unit.
    Cai B; Laugeman E; Mazur TR; Park JC; Henke LE; Kim H; Hugo GD; Mutic S; Li H
    Med Phys; 2019 Mar; 46(3):1355-1370. PubMed ID: 30675902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A unified scatter rejection and correction method for cone beam computed tomography.
    Altunbas C; Park Y; Yu Z; Gopal A
    Med Phys; 2021 Mar; 48(3):1211-1225. PubMed ID: 33378551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monte Carlo evaluation of scatter mitigation strategies in cone-beam CT.
    Lazos D; Williamson JF
    Med Phys; 2010 Oct; 37(10):5456-70. PubMed ID: 21089782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of image quality with a fast iterative scatter and beam hardening correction method for kV CBCT.
    Reitz I; Hesse BM; Nill S; Tücking T; Oelfke U
    Z Med Phys; 2009; 19(3):158-72. PubMed ID: 19761093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of a two-dimensional Moire-free antiscatter grid for cone-beam computed tomography.
    Kim J; Kang Y; Hwang T; Park M; Chung W
    Med Phys; 2023 Jun; 50(6):3435-3444. PubMed ID: 36748167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monte Carlo study of the effects of system geometry and antiscatter grids on cone-beam CT scatter distributions.
    Sisniega A; Zbijewski W; Badal A; Kyprianou IS; Stayman JW; Vaquero JJ; Siewerdsen JH
    Med Phys; 2013 May; 40(5):051915. PubMed ID: 23635285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 97.