BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 24877822)

  • 1. Improved digital breast tomosynthesis images using automated ultrasound.
    Zhang X; Yuan J; Du S; Kripfgans OD; Wang X; Carson PL; Liu X
    Med Phys; 2014 Jun; 41(6):061911. PubMed ID: 24877822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Image quality of microcalcifications in digital breast tomosynthesis: effects of projection-view distributions.
    Lu Y; Chan HP; Wei J; Goodsitt M; Carson PL; Hadjiiski L; Schmitz A; Eberhard JW; Claus BE
    Med Phys; 2011 Oct; 38(10):5703-12. PubMed ID: 21992385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparative study of limited-angle cone-beam reconstruction methods for breast tomosynthesis.
    Zhang Y; Chan HP; Sahiner B; Wei J; Goodsitt MM; Hadjiiski LM; Ge J; Zhou C
    Med Phys; 2006 Oct; 33(10):3781-95. PubMed ID: 17089843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Segmented separable footprint projector for digital breast tomosynthesis and its application for subpixel reconstruction.
    Zheng J; Fessler JA; Chan HP
    Med Phys; 2017 Mar; 44(3):986-1001. PubMed ID: 28058719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An iterative reconstruction algorithm for digital breast tomosynthesis imaging using real data at three radiation doses.
    Polat A; Yildirim I
    J Xray Sci Technol; 2018; 26(3):347-360. PubMed ID: 29504549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Breast mass characterization using 3-dimensional automated ultrasound as an adjunct to digital breast tomosynthesis: a pilot study.
    Padilla F; Roubidoux MA; Paramagul C; Sinha SP; Goodsitt MM; Le Carpentier GL; Chan HP; Hadjiiski LM; Fowlkes JB; Joe AD; Klein KA; Nees AV; Noroozian M; Patterson SK; Pinsky RW; Hooi FM; Carson PL
    J Ultrasound Med; 2013 Jan; 32(1):93-104. PubMed ID: 23269714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduced anatomical clutter in digital breast tomosynthesis with statistical iterative reconstruction.
    Garrett JW; Li Y; Li K; Chen GH
    Med Phys; 2018 May; 45(5):2009-2022. PubMed ID: 29542821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of reconstruction algorithms for a stationary digital breast tomosynthesis system using a carbon nanotube X-ray source array.
    Hu Z; Chen Z; Zhou C; Hong X; Chen J; Zhang Q; Jiang C; Ge Y; Yang Y; Liu X; Zheng H; Li Z; Liang D
    J Xray Sci Technol; 2020; 28(6):1157-1169. PubMed ID: 32925159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects on image quality of a 2D antiscatter grid in x-ray digital breast tomosynthesis: Initial experience using the dual modality (x-ray and molecular) breast tomosynthesis scanner.
    Patel T; Peppard H; Williams MB
    Med Phys; 2016 Apr; 43(4):1720. PubMed ID: 27036570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deformable mapping using biomechanical models to relate corresponding lesions in digital breast tomosynthesis and automated breast ultrasound images.
    Green CA; Goodsitt MM; Roubidoux MA; Brock KK; Davis CL; Lau JH; Carson PL
    Med Image Anal; 2020 Feb; 60():101599. PubMed ID: 31760192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison study of reconstruction algorithms for prototype digital breast tomosynthesis using various breast phantoms.
    Kim YS; Park HS; Lee HH; Choi YW; Choi JG; Kim HH; Kim HJ
    Radiol Med; 2016 Feb; 121(2):81-92. PubMed ID: 26383027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dependency of image quality on system configuration parameters in a stationary digital breast tomosynthesis system.
    Tucker AW; Lu J; Zhou O
    Med Phys; 2013 Mar; 40(3):031917. PubMed ID: 23464332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DIR-DBTnet: Deep iterative reconstruction network for three-dimensional digital breast tomosynthesis imaging.
    Su T; Deng X; Yang J; Wang Z; Fang S; Zheng H; Liang D; Ge Y
    Med Phys; 2021 May; 48(5):2289-2300. PubMed ID: 33594671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deformable Mapping Method to Relate Lesions in Dedicated Breast CT Images to Those in Automated Breast Ultrasound and Digital Breast Tomosynthesis Images.
    Green CA; Goodsitt MM; Lau JH; Brock KK; Davis CL; Carson PL
    Ultrasound Med Biol; 2020 Mar; 46(3):750-765. PubMed ID: 31806500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigating simulation-based metrics for characterizing linear iterative reconstruction in digital breast tomosynthesis.
    Rose SD; Sanchez AA; Sidky EY; Pan X
    Med Phys; 2017 Sep; 44(9):e279-e296. PubMed ID: 28901614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Artifact reduction methods for truncated projections in iterative breast tomosynthesis reconstruction.
    Zhang Y; Chan HP; Sahiner B; Wei J; Zhou C; Hadjiiski LM
    J Comput Assist Tomogr; 2009; 33(3):426-35. PubMed ID: 19478639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of a constrained paired-view technique in iterative reconstruction for breast tomosynthesis.
    Wu G; Mainprize JG; Yaffe MJ
    Med Phys; 2013 Oct; 40(10):101901. PubMed ID: 24089903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A software-based x-ray scatter correction method for breast tomosynthesis.
    Jia Feng SS; Sechopoulos I
    Med Phys; 2011 Dec; 38(12):6643-53. PubMed ID: 22149846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deformable mapping technique to correlate lesions in digital breast tomosynthesis and automated breast ultrasound images.
    Green CA; Goodsitt MM; Brock KK; Davis CL; Larson ED; Lau JH; Carson PL
    Med Phys; 2018 Oct; 45(10):4402-4417. PubMed ID: 30066340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The quantitative potential for breast tomosynthesis imaging.
    Shafer CM; Samei E; Lo JY
    Med Phys; 2010 Mar; 37(3):1004-16. PubMed ID: 20384236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.