These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 24877883)

  • 1. Best of both worlds: on the complementarity of ligand-based and structure-based virtual screening.
    Broccatelli F; Brown N
    J Chem Inf Model; 2014 Jun; 54(6):1634-41. PubMed ID: 24877883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ligity: A Non-Superpositional, Knowledge-Based Approach to Virtual Screening.
    Ebejer JP; Finn PW; Wong WK; Deane CM; Morris GM
    J Chem Inf Model; 2019 Jun; 59(6):2600-2616. PubMed ID: 31117509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extensive consensus docking evaluation for ligand pose prediction and virtual screening studies.
    Tuccinardi T; Poli G; Romboli V; Giordano A; Martinelli A
    J Chem Inf Model; 2014 Oct; 54(10):2980-6. PubMed ID: 25211541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonlinear scoring functions for similarity-based ligand docking and binding affinity prediction.
    Brylinski M
    J Chem Inf Model; 2013 Nov; 53(11):3097-112. PubMed ID: 24171431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving molecular docking through eHiTS' tunable scoring function.
    Ravitz O; Zsoldos Z; Simon A
    J Comput Aided Mol Des; 2011 Nov; 25(11):1033-51. PubMed ID: 22076470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PSOVina: The hybrid particle swarm optimization algorithm for protein-ligand docking.
    Ng MC; Fong S; Siu SW
    J Bioinform Comput Biol; 2015 Jun; 13(3):1541007. PubMed ID: 25800162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. LASSO-ligand activity by surface similarity order: a new tool for ligand based virtual screening.
    Reid D; Sadjad BS; Zsoldos Z; Simon A
    J Comput Aided Mol Des; 2008; 22(6-7):479-87. PubMed ID: 18204980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of several molecular docking programs: pose prediction and virtual screening accuracy.
    Cross JB; Thompson DC; Rai BK; Baber JC; Fan KY; Hu Y; Humblet C
    J Chem Inf Model; 2009 Jun; 49(6):1455-74. PubMed ID: 19476350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of compound ranking for structure-based virtual ligand screening using an established FRED-Surflex consensus approach.
    Du J; Bleylevens IW; Bitorina AV; Wichapong K; Nicolaes GA
    Chem Biol Drug Des; 2014 Jan; 83(1):37-51. PubMed ID: 23941463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pharmacophore-based virtual screening versus docking-based virtual screening: a benchmark comparison against eight targets.
    Chen Z; Li HL; Zhang QJ; Bao XG; Yu KQ; Luo XM; Zhu WL; Jiang HL
    Acta Pharmacol Sin; 2009 Dec; 30(12):1694-708. PubMed ID: 19935678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A detailed comparison of current docking and scoring methods on systems of pharmaceutical relevance.
    Perola E; Walters WP; Charifson PS
    Proteins; 2004 Aug; 56(2):235-49. PubMed ID: 15211508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Boosting Docking-Based Virtual Screening with Deep Learning.
    Pereira JC; Caffarena ER; Dos Santos CN
    J Chem Inf Model; 2016 Dec; 56(12):2495-2506. PubMed ID: 28024405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of receptor structural ensembles for virtual screening using binding site shape analysis and clustering.
    Osguthorpe DJ; Sherman W; Hagler AT
    Chem Biol Drug Des; 2012 Aug; 80(2):182-93. PubMed ID: 22515569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Virtual Screening Using Pharmacophore Models Retrieved from Molecular Dynamic Simulations.
    Polishchuk P; Kutlushina A; Bashirova D; Mokshyna O; Madzhidov T
    Int J Mol Sci; 2019 Nov; 20(23):. PubMed ID: 31757043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using the Semiempirical Quantum Mechanics in Improving the Molecular Docking: A Case Study with CDK2.
    Bagheri S; Behnejad H; Firouzi R; Karimi-Jafari MH
    Mol Inform; 2020 Sep; 39(9):e2000036. PubMed ID: 32485047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Can we use docking and scoring for hit-to-lead optimization?
    Enyedy IJ; Egan WJ
    J Comput Aided Mol Des; 2008; 22(3-4):161-8. PubMed ID: 18183356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FINDSITE(comb): a threading/structure-based, proteomic-scale virtual ligand screening approach.
    Zhou H; Skolnick J
    J Chem Inf Model; 2013 Jan; 53(1):230-40. PubMed ID: 23240691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimizing fragment and scaffold docking by use of molecular interaction fingerprints.
    Marcou G; Rognan D
    J Chem Inf Model; 2007; 47(1):195-207. PubMed ID: 17238265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reliability analysis and optimization of the consensus docking approach for the development of virtual screening studies.
    Poli G; Martinelli A; Tuccinardi T
    J Enzyme Inhib Med Chem; 2016; 31(sup2):167-173. PubMed ID: 27311630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binding energy landscape analysis helps to discriminate true hits from high-scoring decoys in virtual screening.
    Wei D; Zheng H; Su N; Deng M; Lai L
    J Chem Inf Model; 2010 Oct; 50(10):1855-64. PubMed ID: 20968314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.