These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 24877883)

  • 21. Comparison of structure- and ligand-based virtual screening protocols considering hit list complementarity and enrichment factors.
    Krüger DM; Evers A
    ChemMedChem; 2010 Jan; 5(1):148-58. PubMed ID: 19908272
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure-based virtual screening approach for discovery of covalently bound ligands.
    Toledo Warshaviak D; Golan G; Borrelli KW; Zhu K; Kalid O
    J Chem Inf Model; 2014 Jul; 54(7):1941-50. PubMed ID: 24932913
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cosolvent-Based Protein Pharmacophore for Ligand Enrichment in Virtual Screening.
    Arcon JP; Defelipe LA; Lopez ED; Burastero O; Modenutti CP; Barril X; Marti MA; Turjanski AG
    J Chem Inf Model; 2019 Aug; 59(8):3572-3583. PubMed ID: 31373819
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Docking with GemDock.
    Bitencourt-Ferreira G; de Azevedo WF
    Methods Mol Biol; 2019; 2053():169-188. PubMed ID: 31452105
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Toward fully automated high performance computing drug discovery: a massively parallel virtual screening pipeline for docking and molecular mechanics/generalized Born surface area rescoring to improve enrichment.
    Zhang X; Wong SE; Lightstone FC
    J Chem Inf Model; 2014 Jan; 54(1):324-37. PubMed ID: 24358939
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comprehensive assessment of flexible-ligand docking algorithms: current effectiveness and challenges.
    Huang SY
    Brief Bioinform; 2018 Sep; 19(5):982-994. PubMed ID: 28334282
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Protein structures in virtual screening: a case study with CDK2.
    Thomas MP; McInnes C; Fischer PM
    J Med Chem; 2006 Jan; 49(1):92-104. PubMed ID: 16392795
    [TBL] [Abstract][Full Text] [Related]  

  • 28. RADER: a RApid DEcoy Retriever to facilitate decoy based assessment of virtual screening.
    Wang L; Pang X; Li Y; Zhang Z; Tan W
    Bioinformatics; 2017 Apr; 33(8):1235-1237. PubMed ID: 28011765
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Benchmark of four popular virtual screening programs: construction of the active/decoy dataset remains a major determinant of measured performance.
    Chaput L; Martinez-Sanz J; Saettel N; Mouawad L
    J Cheminform; 2016; 8():56. PubMed ID: 27803745
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comprehensive evaluation of ten docking programs on a diverse set of protein-ligand complexes: the prediction accuracy of sampling power and scoring power.
    Wang Z; Sun H; Yao X; Li D; Xu L; Li Y; Tian S; Hou T
    Phys Chem Chem Phys; 2016 May; 18(18):12964-75. PubMed ID: 27108770
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A flexible-protein molecular docking study of the binding of ruthenium complex compounds to PIM1, GSK-3β, and CDK2/Cyclin A protein kinases.
    Liu Y; Agrawal NJ; Radhakrishnan R
    J Mol Model; 2013 Jan; 19(1):371-82. PubMed ID: 22926267
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improving Protein-Ligand Docking Results with High-Throughput Molecular Dynamics Simulations.
    Guterres H; Im W
    J Chem Inf Model; 2020 Apr; 60(4):2189-2198. PubMed ID: 32227880
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improved Method of Structure-Based Virtual Screening via Interaction-Energy-Based Learning.
    Yasuo N; Sekijima M
    J Chem Inf Model; 2019 Mar; 59(3):1050-1061. PubMed ID: 30808172
    [TBL] [Abstract][Full Text] [Related]  

  • 34. FRAGSITE: A Fragment-Based Approach for Virtual Ligand Screening.
    Zhou H; Cao H; Skolnick J
    J Chem Inf Model; 2021 Apr; 61(4):2074-2089. PubMed ID: 33724022
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structure-based discovery of the first allosteric inhibitors of cyclin-dependent kinase 2.
    Rastelli G; Anighoro A; Chripkova M; Carrassa L; Broggini M
    Cell Cycle; 2014; 13(14):2296-305. PubMed ID: 24911186
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular Modeling and Design Studies of Purine Derivatives as Novel CDK2 Inhibitors.
    Zhang G; Ren Y
    Molecules; 2018 Nov; 23(11):. PubMed ID: 30423939
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Protein flexibility in ligand docking and virtual screening to protein kinases.
    Cavasotto CN; Abagyan RA
    J Mol Biol; 2004 Mar; 337(1):209-25. PubMed ID: 15001363
    [TBL] [Abstract][Full Text] [Related]  

  • 38. GPCR-Bench: A Benchmarking Set and Practitioners' Guide for G Protein-Coupled Receptor Docking.
    Weiss DR; Bortolato A; Tehan B; Mason JS
    J Chem Inf Model; 2016 Apr; 56(4):642-51. PubMed ID: 26958710
    [TBL] [Abstract][Full Text] [Related]  

  • 39. FLAP: GRID molecular interaction fields in virtual screening. validation using the DUD data set.
    Cross S; Baroni M; Carosati E; Benedetti P; Clementi S
    J Chem Inf Model; 2010 Aug; 50(8):1442-50. PubMed ID: 20690627
    [TBL] [Abstract][Full Text] [Related]  

  • 40. GWOVina: A grey wolf optimization approach to rigid and flexible receptor docking.
    Wong KM; Tai HK; Siu SWI
    Chem Biol Drug Des; 2021 Jan; 97(1):97-110. PubMed ID: 32679606
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.