These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 24877966)

  • 1. Kovacs-like memory effect in driven granular gases.
    Prados A; Trizac E
    Phys Rev Lett; 2014 May; 112(19):198001. PubMed ID: 24877966
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Memory effect in uniformly heated granular gases.
    Trizac E; Prados A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012204. PubMed ID: 25122296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluctuation-dissipation relations in driven granular gases.
    Puglisi A; Baldassarri A; Loreto V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Dec; 66(6 Pt 1):061305. PubMed ID: 12513278
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Linear response in the uniformly heated granular gas.
    Sánchez-Rey B; Prados A
    Phys Rev E; 2021 Aug; 104(2-1):024903. PubMed ID: 34525635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Giant Kovacs-Like Memory Effect for Active Particles.
    Kürsten R; Sushkov V; Ihle T
    Phys Rev Lett; 2017 Nov; 119(18):188001. PubMed ID: 29219569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Memory effects in the relaxation of a confined granular gas.
    Brey JJ; de Soria MI; Maynar P; Buzón V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032207. PubMed ID: 25314437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantifying non-ergodic dynamics of force-free granular gases.
    Bodrova A; Chechkin AV; Cherstvy AG; Metzler R
    Phys Chem Chem Phys; 2015 Sep; 17(34):21791-8. PubMed ID: 26252559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Memory effects in the two-level model for glasses.
    Aquino G; Allahverdyan A; Nieuwenhuizen TM
    Phys Rev Lett; 2008 Jul; 101(1):015901. PubMed ID: 18764124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Velocity distribution function and effective restitution coefficient for a granular gas of viscoelastic particles.
    Dubey AK; Bodrova A; Puri S; Brilliantov N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062202. PubMed ID: 23848666
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diffusivity and weak clustering in a quasi-two-dimensional granular gas.
    Perera-Burgos JA; Pérez-Ángel G; Nahmad-Molinari Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 1):051305. PubMed ID: 21230471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluctuating hydrodynamics for dilute granular gases: a Monte Carlo study.
    Costantini G; Puglisi A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 1):011305. PubMed ID: 20866609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uniform shear flow in dissipative gases: computer simulations of inelastic hard spheres and frictional elastic hard spheres.
    Astillero A; Santos A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 1):031309. PubMed ID: 16241428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy dissipation in driven granular matter in the absence of gravity.
    Sack A; Heckel M; Kollmer JE; Zimber F; Pöschel T
    Phys Rev Lett; 2013 Jul; 111(1):018001. PubMed ID: 23863027
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystallization via shaking in a granular gas with van der Waals interactions.
    Bai Q; Mazza MG
    Phys Rev E; 2019 Oct; 100(4-1):042910. PubMed ID: 31770995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonmonotonic Aging and Memory in a Frictional Interface.
    Dillavou S; Rubinstein SM
    Phys Rev Lett; 2018 Jun; 120(22):224101. PubMed ID: 29906177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Steady-state velocity distributions of an oscillated granular gas.
    Moon SJ; Swift JB; Swinney HL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jan; 69(1 Pt 1):011301. PubMed ID: 14995608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unsteady non-Newtonian hydrodynamics in granular gases.
    Astillero A; Santos A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021302. PubMed ID: 22463197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Driven granular gases with gravity.
    Baldassarri A; Marconi UM; Puglisi A; Vulpiani A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jul; 64(1 Pt 1):011301. PubMed ID: 11461243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Internal energy fluctuations of a granular gas under steady uniform shear flow.
    Brey JJ; García de Soria MI; Maynar P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 1):031304. PubMed ID: 23030909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Partitioning of energy in highly polydisperse granular gases.
    Uecker H; Kranz WT; Aspelmeier T; Zippelius A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 1):041303. PubMed ID: 19905304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.