These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1007 related articles for article (PubMed ID: 24878003)
1. S/G-1: an ab initio force-field blending frozen Hermite Gaussian densities and distributed multipoles. Proof of concept and first applications to metal cations. Chaudret R; Gresh N; Narth C; Lagardère L; Darden TA; Cisneros GA; Piquemal JP J Phys Chem A; 2014 Sep; 118(35):7598-612. PubMed ID: 24878003 [TBL] [Abstract][Full Text] [Related]
2. Towards a force field based on density fitting. Piquemal JP; Cisneros GA; Reinhardt P; Gresh N; Darden TA J Chem Phys; 2006 Mar; 124(10):104101. PubMed ID: 16542062 [TBL] [Abstract][Full Text] [Related]
3. Many-body exchange-repulsion in polarizable molecular mechanics. I. Orbital-based approximations and applications to hydrated metal cation complexes. Chaudret R; Gresh N; Parisel O; Piquemal JP J Comput Chem; 2011 Nov; 32(14):2949-57. PubMed ID: 21793002 [TBL] [Abstract][Full Text] [Related]
4. Anisotropic, Polarizable Molecular Mechanics Studies of Inter- and Intramolecular Interactions and Ligand-Macromolecule Complexes. A Bottom-Up Strategy. Gresh N; Cisneros GA; Darden TA; Piquemal JP J Chem Theory Comput; 2007 Nov; 3(6):1960-1986. PubMed ID: 18978934 [TBL] [Abstract][Full Text] [Related]
5. Representation of Zn(II) complexes in polarizable molecular mechanics. Further refinements of the electrostatic and short-range contributions. Comparisons with parallel ab initio computations. Gresh N; Piquemal JP; Krauss M J Comput Chem; 2005 Aug; 26(11):1113-30. PubMed ID: 15934064 [TBL] [Abstract][Full Text] [Related]
6. Polarizable molecular mechanics studies of Cu(I)/Zn(II) superoxide dismutase: bimetallic binding site and structured waters. Gresh N; El Hage K; Perahia D; Piquemal JP; Berthomieu C; Berthomieu D J Comput Chem; 2014 Nov; 35(29):2096-106. PubMed ID: 25212748 [TBL] [Abstract][Full Text] [Related]
7. New model potentials for sulfur-copper(I) and sulfur-mercury(II) interactions in proteins: from ab initio to molecular dynamics. Fuchs JF; Nedev H; Poger D; Ferrand M; Brenner V; Dognon JP; Crouzy S J Comput Chem; 2006 May; 27(7):837-56. PubMed ID: 16541427 [TBL] [Abstract][Full Text] [Related]
8. Application of Gaussian Electrostatic Model (GEM) Distributed Multipoles in the AMOEBA Force Field. Cisneros GA J Chem Theory Comput; 2012 Dec; 8(12):5072-80. PubMed ID: 26593198 [TBL] [Abstract][Full Text] [Related]
9. Development, validation, and applications of anisotropic polarizable molecular mechanics to study ligand and drug-receptor interactions. Gresh N Curr Pharm Des; 2006; 12(17):2121-58. PubMed ID: 16796560 [TBL] [Abstract][Full Text] [Related]
10. Inclusion of the ligand field contribution in a polarizable molecular mechanics: SIBFA-LF. Piquemal JP; Williams-Hubbard B; Fey N; Deeth RJ; Gresh N; Giessner-Prettre C J Comput Chem; 2003 Dec; 24(16):1963-70. PubMed ID: 14531050 [TBL] [Abstract][Full Text] [Related]
11. Scalable improvement of SPME multipolar electrostatics in anisotropic polarizable molecular mechanics using a general short-range penetration correction up to quadrupoles. Narth C; Lagardère L; Polack É; Gresh N; Wang Q; Bell DR; Rackers JA; Ponder JW; Ren PY; Piquemal JP J Comput Chem; 2016 Feb; 37(5):494-506. PubMed ID: 26814845 [TBL] [Abstract][Full Text] [Related]
12. Transferability and additivity of dihedral parameters in polarizable and nonpolarizable empirical force fields. Zgarbová M; Rosnik AM; Luque FJ; Curutchet C; Jurečka P J Comput Chem; 2015 Sep; 36(25):1874-84. PubMed ID: 26224547 [TBL] [Abstract][Full Text] [Related]
13. Generalization of the Gaussian electrostatic model: extension to arbitrary angular momentum, distributed multipoles, and speedup with reciprocal space methods. Cisneros GA; Piquemal JP; Darden TA J Chem Phys; 2006 Nov; 125(18):184101. PubMed ID: 17115732 [TBL] [Abstract][Full Text] [Related]
14. Improvement of the Gaussian Electrostatic Model by separate fitting of Coulomb and exchange-repulsion densities and implementation of a new dispersion term. Naseem-Khan S; Piquemal JP; Cisneros GA J Chem Phys; 2021 Nov; 155(19):194103. PubMed ID: 34800949 [TBL] [Abstract][Full Text] [Related]
15. Revisiting the hexane-water interface via molecular dynamics simulations using nonadditive alkane-water potentials. Patel SA; Brooks CL J Chem Phys; 2006 May; 124(20):204706. PubMed ID: 16774363 [TBL] [Abstract][Full Text] [Related]
16. Force fields including charge transfer and local polarization effects: Application to proteins containing multi/heavy metal ions. Sakharov DV; Lim C J Comput Chem; 2009 Jan; 30(2):191-202. PubMed ID: 18566982 [TBL] [Abstract][Full Text] [Related]
17. Key role of the polarization anisotropy of water in modeling classical polarizable force fields. Piquemal JP; Chelli R; Procacci P; Gresh N J Phys Chem A; 2007 Aug; 111(33):8170-6. PubMed ID: 17665882 [TBL] [Abstract][Full Text] [Related]
18. Revisiting the geometry of nd10 (n+1)s0 [M(H2O)]p+ complexes using four-component relativistic DFT calculations and scalar relativistic correlated CSOV energy decompositions (M(p+) = Cu+, Zn2+, Ag+, Cd2+, Au+, Hg2+). Gourlaouen C; Piquemal JP; Saue T; Parisel O J Comput Chem; 2006 Jan; 27(2):142-56. PubMed ID: 16312018 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of Representations and Response Models for Polarizable Force Fields. Li A; Voronin A; Fenley AT; Gilson MK J Phys Chem B; 2016 Aug; 120(33):8668-84. PubMed ID: 27248842 [TBL] [Abstract][Full Text] [Related]
20. Development of the Quantum-Inspired SIBFA Many-Body Polarizable Force Field: Enabling Condensed-Phase Molecular Dynamics Simulations. Naseem-Khan S; Lagardère L; Narth C; Cisneros GA; Ren P; Gresh N; Piquemal JP J Chem Theory Comput; 2022 Jun; 18(6):3607-3621. PubMed ID: 35575306 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]