These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 24878498)

  • 21. Sequence optimization as an alternative to de novo analysis of tandem mass spectrometry data.
    Heredia-Langner A; Cannon WR; Jarman KD; Jarman KH
    Bioinformatics; 2004 Sep; 20(14):2296-304. PubMed ID: 15087321
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A suffix tree approach to the interpretation of tandem mass spectra: applications to peptides of non-specific digestion and post-translational modifications.
    Lu B; Chen T
    Bioinformatics; 2003 Oct; 19 Suppl 2():ii113-21. PubMed ID: 14534180
    [TBL] [Abstract][Full Text] [Related]  

  • 23. De novo sequencing methods in proteomics.
    Hughes C; Ma B; Lajoie GA
    Methods Mol Biol; 2010; 604():105-21. PubMed ID: 20013367
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The spectral networks paradigm in high throughput mass spectrometry.
    Guthals A; Watrous JD; Dorrestein PC; Bandeira N
    Mol Biosyst; 2012 Oct; 8(10):2535-44. PubMed ID: 22610447
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Searching sequence databases via de novo peptide sequencing by tandem mass spectrometry.
    Johnson RS; Taylor JA
    Mol Biotechnol; 2002 Nov; 22(3):301-15. PubMed ID: 12448884
    [TBL] [Abstract][Full Text] [Related]  

  • 26. pNovo+: de novo peptide sequencing using complementary HCD and ETD tandem mass spectra.
    Chi H; Chen H; He K; Wu L; Yang B; Sun RX; Liu J; Zeng WF; Song CQ; He SM; Dong MQ
    J Proteome Res; 2013 Feb; 12(2):615-25. PubMed ID: 23272783
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Potential Golden Age to Come-Current Tools, Recent Use Cases, and Future Avenues for De Novo Sequencing in Proteomics.
    Muth T; Hartkopf F; Vaudel M; Renard BY
    Proteomics; 2018 Sep; 18(18):e1700150. PubMed ID: 29968278
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Two-dimensional mass spectra generated from the analysis of 15N-labeled and unlabeled peptides for efficient protein identification and de novo peptide sequencing.
    Zhong H; Marcus SL; Li L
    J Proteome Res; 2004; 3(6):1155-63. PubMed ID: 15595724
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An Approach for Peptide Identification by De Novo Sequencing of Mixture Spectra.
    Liu Y; Ma B; Zhang K; Lajoie G
    IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(2):326-336. PubMed ID: 28368810
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Flying blind, or just flying under the radar? The underappreciated power of de novo methods of mass spectrometric peptide identification.
    O'Bryon I; Jenson SC; Merkley ED
    Protein Sci; 2020 Sep; 29(9):1864-1878. PubMed ID: 32713088
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spectral dictionaries: Integrating de novo peptide sequencing with database search of tandem mass spectra.
    Kim S; Gupta N; Bandeira N; Pevzner PA
    Mol Cell Proteomics; 2009 Jan; 8(1):53-69. PubMed ID: 18703573
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Integrated analysis of shotgun proteomic data with PatternLab for proteomics 4.0.
    Carvalho PC; Lima DB; Leprevost FV; Santos MD; Fischer JS; Aquino PF; Moresco JJ; Yates JR; Barbosa VC
    Nat Protoc; 2016 Jan; 11(1):102-17. PubMed ID: 26658470
    [TBL] [Abstract][Full Text] [Related]  

  • 33. De novo peptide sequencing using ion peak intensity and amino acid cleavage intensity ratio.
    Kanazawa M; Anyoji H; Ogiwara A; Nagashima U
    Bioinformatics; 2007 May; 23(9):1068-72. PubMed ID: 17341498
    [TBL] [Abstract][Full Text] [Related]  

  • 34. De Novo Sequencing Assisted Approach for Characterizing Mixture MS/MS Spectra.
    Liu Y; Sun W; John J; Lajoie G; Ma B; Zhang K
    IEEE Trans Nanobioscience; 2016 Mar; 15(2):166-76. PubMed ID: 26800542
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spectral clustering in peptidomics studies allows homology searching and modification profiling: HomClus, a versatile tool.
    Menschaert G; Hayakawa E; Schoofs L; Van Criekinge W; Baggerman G
    J Proteome Res; 2012 May; 11(5):2774-85. PubMed ID: 22409323
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Assessing Protein Sequence Database Suitability Using
    Johnson RS; Searle BC; Nunn BL; Gilmore JM; Phillips M; Amemiya CT; Heck M; MacCoss MJ
    Mol Cell Proteomics; 2020 Jan; 19(1):198-208. PubMed ID: 31732549
    [TBL] [Abstract][Full Text] [Related]  

  • 37.
    Vitorino R; Guedes S; Trindade F; Correia I; Moura G; Carvalho P; Santos MAS; Amado F
    Expert Rev Proteomics; 2020; 17(7-8):595-607. PubMed ID: 33016158
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Large-scale database searching using tandem mass spectra: looking up the answer in the back of the book.
    Sadygov RG; Cociorva D; Yates JR
    Nat Methods; 2004 Dec; 1(3):195-202. PubMed ID: 15789030
    [TBL] [Abstract][Full Text] [Related]  

  • 39. pNovo 3: precise de novo peptide sequencing using a learning-to-rank framework.
    Yang H; Chi H; Zeng WF; Zhou WJ; He SM
    Bioinformatics; 2019 Jul; 35(14):i183-i190. PubMed ID: 31510687
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multi-spectra peptide sequencing and its applications to multistage mass spectrometry.
    Bandeira N; Olsen JV; Mann JV; Mann M; Pevzner PA
    Bioinformatics; 2008 Jul; 24(13):i416-23. PubMed ID: 18785330
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.