These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 24878593)

  • 1. Audio-visual perception system for a humanoid robotic head.
    Viciana-Abad R; Marfil R; Perez-Lorenzo JM; Bandera JP; Romero-Garces A; Reche-Lopez P
    Sensors (Basel); 2014 May; 14(6):9522-45. PubMed ID: 24878593
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Biological Inspired Cognitive Framework for Memory-Based Multi-Sensory Joint Attention in Human-Robot Interactive Tasks.
    Eldardeer O; Gonzalez-Billandon J; Grasse L; Tata M; Rea F
    Front Neurorobot; 2021; 15():648595. PubMed ID: 34887738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Muecas: a multi-sensor robotic head for affective human robot interaction and imitation.
    Cid F; Moreno J; Bustos P; Núñez P
    Sensors (Basel); 2014 Apr; 14(5):7711-37. PubMed ID: 24787636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A multi-sensorial hybrid control for robotic manipulation in human-robot workspaces.
    Pomares J; Perea I; García GJ; Jara CA; Corrales JA; Torres F
    Sensors (Basel); 2011; 11(10):9839-62. PubMed ID: 22163729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative Study of SSVEP- and P300-Based Models for the Telepresence Control of Humanoid Robots.
    Zhao J; Li W; Li M
    PLoS One; 2015; 10(11):e0142168. PubMed ID: 26562524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Multi-Modal Person Perception Framework for Socially Interactive Mobile Service Robots.
    Müller S; Wengefeld T; Trinh TQ; Aganian D; Eisenbach M; Gross HM
    Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 32012943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developmental word grounding through a growing neural network with a humanoid robot.
    He X; Kojima R; Hasegawa O
    IEEE Trans Syst Man Cybern B Cybern; 2007 Apr; 37(2):451-62. PubMed ID: 17416171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RoboCoV Cleaner: An Indoor Autonomous UV-C Disinfection Robot with Advanced Dual-Safety Systems.
    Bratu DV; Zolya MA; Moraru SA
    Sensors (Basel); 2024 Feb; 24(3):. PubMed ID: 38339691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human-Robot Confluence: Toward a Humane Robotics.
    Riva G; Wiederhold BK
    Cyberpsychol Behav Soc Netw; 2021 May; 24(5):291-293. PubMed ID: 34003012
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Role of Audio-Visual Feedback in a Thought-Based Control of a Humanoid Robot: A BCI Study in Healthy and Spinal Cord Injured People.
    Tidoni E; Gergondet P; Fusco G; Kheddar A; Aglioti SM
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):772-781. PubMed ID: 28113631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robot evolutionary localization based on attentive visual short-term memory.
    Vega J; Perdices E; Cañas JM
    Sensors (Basel); 2013 Jan; 13(1):1268-99. PubMed ID: 23337333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visual measurement of suture strain for robotic surgery.
    Martell J; Elmer T; Gopalsami N; Park YS
    Comput Math Methods Med; 2011; 2011():879086. PubMed ID: 21436874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A reliability-based particle filter for humanoid robot self-localization in RoboCup Standard Platform League.
    Munera Sánchez E; Muñoz Alcobendas M; Blanes Noguera JF; Benet Gilabert G; Simó Ten JE
    Sensors (Basel); 2013 Nov; 13(11):14954-83. PubMed ID: 24193098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Perception of robot passability with direct line of sight and teleoperation.
    Moore KS; Gomer JA; Pagano CC; Moore DD
    Hum Factors; 2009 Aug; 51(4):557-70. PubMed ID: 19899364
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Brain-Robot Interaction System by Fusing Human and Machine Intelligence.
    Mao X; Li W; Lei C; Jin J; Duan F; Chen S
    IEEE Trans Neural Syst Rehabil Eng; 2019 Mar; 27(3):533-542. PubMed ID: 30716043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CYCLOPS: A mobile robotic platform for testing and validating image processing and autonomous navigation algorithms in support of artificial vision prostheses.
    Fink W; Tarbell MA
    Comput Methods Programs Biomed; 2009 Dec; 96(3):226-33. PubMed ID: 19651459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An egocentric vision based assistive co-robot.
    Zhang J; Zhuang L; Wang Y; Zhou Y; Meng Y; Hua G
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650473. PubMed ID: 24187290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anticipatory visual perception as a bio-inspired mechanism underlying robot locomotion.
    Barrera A; Laschi C
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3206-9. PubMed ID: 21096813
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physical Human-Robot Collaboration: Robotic Systems, Learning Methods, Collaborative Strategies, Sensors, and Actuators.
    Ogenyi UE; Liu J; Yang C; Ju Z; Liu H
    IEEE Trans Cybern; 2021 Apr; 51(4):1888-1901. PubMed ID: 31751257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Group Emotion Detection Based on Social Robot Perception.
    Quiroz M; Patiño R; Diaz-Amado J; Cardinale Y
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.