These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
276 related articles for article (PubMed ID: 24878890)
1. Combination of an agonistic anti-CD40 monoclonal antibody and the COX-2 inhibitor celecoxib induces anti-glioma effects by promotion of type-1 immunity in myeloid cells and T-cells. Kosaka A; Ohkuri T; Okada H Cancer Immunol Immunother; 2014 Aug; 63(8):847-57. PubMed ID: 24878890 [TBL] [Abstract][Full Text] [Related]
2. COX-2 blockade suppresses gliomagenesis by inhibiting myeloid-derived suppressor cells. Fujita M; Kohanbash G; Fellows-Mayle W; Hamilton RL; Komohara Y; Decker SA; Ohlfest JR; Okada H Cancer Res; 2011 Apr; 71(7):2664-74. PubMed ID: 21324923 [TBL] [Abstract][Full Text] [Related]
3. Local convection-enhanced delivery of an anti-CD40 agonistic monoclonal antibody induces antitumor effects in mouse glioma models. Shoji T; Saito R; Chonan M; Shibahara I; Sato A; Kanamori M; Sonoda Y; Kondo T; Ishii N; Tominaga T Neuro Oncol; 2016 Aug; 18(8):1120-8. PubMed ID: 26917236 [TBL] [Abstract][Full Text] [Related]
4. Sunitinib enhances the antitumor responses of agonistic CD40-antibody by reducing MDSCs and synergistically improving endothelial activation and T-cell recruitment. van Hooren L; Georganaki M; Huang H; Mangsbo SM; Dimberg A Oncotarget; 2016 Jul; 7(31):50277-50289. PubMed ID: 27385210 [TBL] [Abstract][Full Text] [Related]
6. Agonistic antibody to CD40 boosts the antitumor activity of adoptively transferred T cells in vivo. Liu C; Lewis CM; Lou Y; Xu C; Peng W; Yang Y; Gelbard AH; Lizée G; Zhou D; Overwijk WW; Hwu P J Immunother; 2012 Apr; 35(3):276-82. PubMed ID: 22421945 [TBL] [Abstract][Full Text] [Related]
7. Enhancement of anti-tumor activity by low-dose combination of the recombinant urokinase kringle domain and celecoxib in a glioma model. Kim CK; Joe YA; Lee SK; Kim EK; O E; Kim HK; Oh BJ; Hong SH; Hong YK Cancer Lett; 2010 Feb; 288(2):251-60. PubMed ID: 19664879 [TBL] [Abstract][Full Text] [Related]
8. Murine Fibroblastic Reticular Cells From Lymph Node Interact With CD4+ T Cells Through CD40-CD40L. Nakayama Y; Brinkman CC; Bromberg JS Transplantation; 2015 Aug; 99(8):1561-7. PubMed ID: 25856408 [TBL] [Abstract][Full Text] [Related]
9. Intranasal administration of a synthetic peptide vaccine encapsulated in liposome together with an anti-CD40 antibody induces protective immunity against influenza A virus in mice. Ninomiya A; Ogasawara K; Kajino K; Takada A; Kida H Vaccine; 2002 Aug; 20(25-26):3123-9. PubMed ID: 12163263 [TBL] [Abstract][Full Text] [Related]
10. Enhancement of antitumor activity by combination of tumor lysate-pulsed dendritic cells and celecoxib in a rat glioma model. Zhang H; Tian M; Xiu C; Wang Y; Tang G Oncol Res; 2013; 20(10):447-55. PubMed ID: 24308155 [TBL] [Abstract][Full Text] [Related]
11. PD-1 blockade and OX40 triggering synergistically protects against tumor growth in a murine model of ovarian cancer. Guo Z; Wang X; Cheng D; Xia Z; Luan M; Zhang S PLoS One; 2014; 9(2):e89350. PubMed ID: 24586709 [TBL] [Abstract][Full Text] [Related]
12. Induction of CTL responses by simultaneous administration of liposomal peptide vaccine with anti-CD40 and anti-CTLA-4 mAb. Ito D; Ogasawara K; Iwabuchi K; Inuyama Y; Onoé K J Immunol; 2000 Feb; 164(3):1230-5. PubMed ID: 10640735 [TBL] [Abstract][Full Text] [Related]
13. Agonistic CD40 antibodies and cancer therapy. Vonderheide RH; Glennie MJ Clin Cancer Res; 2013 Mar; 19(5):1035-43. PubMed ID: 23460534 [TBL] [Abstract][Full Text] [Related]
14. Aggressive skin allograft rejection in CD28-/- mice independent of the CD40/CD40L costimulatory pathway. Ha J; Bingaman AW; Durham MM; Pearson TC; Larsen CP Transpl Immunol; 2001 Oct; 9(1):13-7. PubMed ID: 11680567 [TBL] [Abstract][Full Text] [Related]
15. Augmented IL-15Rα expression by CD40 activation is critical in synergistic CD8 T cell-mediated antitumor activity of anti-CD40 antibody with IL-15 in TRAMP-C2 tumors in mice. Zhang M; Ju W; Yao Z; Yu P; Wei BR; Simpson RM; Waitz R; Fassò M; Allison JP; Waldmann TA J Immunol; 2012 Jun; 188(12):6156-64. PubMed ID: 22593619 [TBL] [Abstract][Full Text] [Related]
16. CD40 ligation activates murine macrophages via an IFN-gamma-dependent mechanism resulting in tumor cell destruction in vitro. Buhtoiarov IN; Lum H; Berke G; Paulnock DM; Sondel PM; Rakhmilevich AL J Immunol; 2005 May; 174(10):6013-22. PubMed ID: 15879094 [TBL] [Abstract][Full Text] [Related]
17. Celecoxib enhances the efficacy of 15-hydroxyprostaglandin dehydrogenase gene therapy in treating murine breast cancer. Zhang B; Ma X; Li Z; Gao X; Wang F; Liu L; Shen G; Sang Y; Li M; Li Y; Zhao J; Wei Y J Cancer Res Clin Oncol; 2013 May; 139(5):797-807. PubMed ID: 23385883 [TBL] [Abstract][Full Text] [Related]
18. Agonistic CD40 therapy induces tertiary lymphoid structures but impairs responses to checkpoint blockade in glioma. van Hooren L; Vaccaro A; Ramachandran M; Vazaios K; Libard S; van de Walle T; Georganaki M; Huang H; Pietilä I; Lau J; Ulvmar MH; Karlsson MCI; Zetterling M; Mangsbo SM; Jakola AS; Olsson Bontell T; Smits A; Essand M; Dimberg A Nat Commun; 2021 Jul; 12(1):4127. PubMed ID: 34226552 [TBL] [Abstract][Full Text] [Related]
19. Systemic inhibition of transforming growth factor-beta in glioma-bearing mice improves the therapeutic efficacy of glioma-associated antigen peptide vaccines. Ueda R; Fujita M; Zhu X; Sasaki K; Kastenhuber ER; Kohanbash G; McDonald HA; Harper J; Lonning S; Okada H Clin Cancer Res; 2009 Nov; 15(21):6551-9. PubMed ID: 19861464 [TBL] [Abstract][Full Text] [Related]
20. Activation of dendritic cells that cross-present tumor-derived antigen licenses CD8+ CTL to cause tumor eradication. van Mierlo GJ; Boonman ZF; Dumortier HM; den Boer AT; Fransen MF; Nouta J; van der Voort EI; Offringa R; Toes RE; Melief CJ J Immunol; 2004 Dec; 173(11):6753-9. PubMed ID: 15557168 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]