These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
503 related articles for article (PubMed ID: 24879308)
1. RNA polymerase II transcription elongation and Pol II CTD Ser2 phosphorylation: A tail of two kinases. Bowman EA; Kelly WG Nucleus; 2014; 5(3):224-36. PubMed ID: 24879308 [TBL] [Abstract][Full Text] [Related]
2. Phosphorylation of the Pol II CTD by KIN28 enhances BUR1/BUR2 recruitment and Ser2 CTD phosphorylation near promoters. Qiu H; Hu C; Hinnebusch AG Mol Cell; 2009 Mar; 33(6):752-62. PubMed ID: 19328068 [TBL] [Abstract][Full Text] [Related]
3. CDK12 is a transcription elongation-associated CTD kinase, the metazoan ortholog of yeast Ctk1. Bartkowiak B; Liu P; Phatnani HP; Fuda NJ; Cooper JJ; Price DH; Adelman K; Lis JT; Greenleaf AL Genes Dev; 2010 Oct; 24(20):2303-16. PubMed ID: 20952539 [TBL] [Abstract][Full Text] [Related]
4. CDK12 globally stimulates RNA polymerase II transcription elongation and carboxyl-terminal domain phosphorylation. Tellier M; Zaborowska J; Caizzi L; Mohammad E; Velychko T; Schwalb B; Ferrer-Vicens I; Blears D; Nojima T; Cramer P; Murphy S Nucleic Acids Res; 2020 Aug; 48(14):7712-7727. PubMed ID: 32805052 [TBL] [Abstract][Full Text] [Related]
5. Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II. Lu H; Yu D; Hansen AS; Ganguly S; Liu R; Heckert A; Darzacq X; Zhou Q Nature; 2018 Jun; 558(7709):318-323. PubMed ID: 29849146 [TBL] [Abstract][Full Text] [Related]
6. RNA polymerase II-associated factor 1 regulates the release and phosphorylation of paused RNA polymerase II. Yu M; Yang W; Ni T; Tang Z; Nakadai T; Zhu J; Roeder RG Science; 2015 Dec; 350(6266):1383-6. PubMed ID: 26659056 [TBL] [Abstract][Full Text] [Related]
7. Tat modifies the activity of CDK9 to phosphorylate serine 5 of the RNA polymerase II carboxyl-terminal domain during human immunodeficiency virus type 1 transcription. Zhou M; Halanski MA; Radonovich MF; Kashanchi F; Peng J; Price DH; Brady JN Mol Cell Biol; 2000 Jul; 20(14):5077-86. PubMed ID: 10866664 [TBL] [Abstract][Full Text] [Related]
8. Herpes Simplex Virus 1 (HSV-1) ICP22 protein directly interacts with cyclin-dependent kinase (CDK)9 to inhibit RNA polymerase II transcription elongation. Zaborowska J; Baumli S; Laitem C; O'Reilly D; Thomas PH; O'Hare P; Murphy S PLoS One; 2014; 9(9):e107654. PubMed ID: 25233083 [TBL] [Abstract][Full Text] [Related]
9. Selective Kinase Inhibition Shows That Bur1 (Cdk9) Phosphorylates the Rpb1 Linker Chun Y; Joo YJ; Suh H; Batot G; Hill CP; Formosa T; Buratowski S Mol Cell Biol; 2019 Aug; 39(15):. PubMed ID: 31085683 [TBL] [Abstract][Full Text] [Related]
10. Phosphorylation of RNA polymerase II is independent of P-TEFb in the C. elegans germline. Bowman EA; Bowman CR; Ahn JH; Kelly WG Development; 2013 Sep; 140(17):3703-13. PubMed ID: 23903194 [TBL] [Abstract][Full Text] [Related]
11. A feed forward circuit comprising Spt6, Ctk1 and PAF regulates Pol II CTD phosphorylation and transcription elongation. Dronamraju R; Strahl BD Nucleic Acids Res; 2014 Jan; 42(2):870-81. PubMed ID: 24163256 [TBL] [Abstract][Full Text] [Related]
12. CDK9 keeps RNA polymerase II on track. Egloff S Cell Mol Life Sci; 2021 Jul; 78(14):5543-5567. PubMed ID: 34146121 [TBL] [Abstract][Full Text] [Related]
13. Human and rodent transcription elongation factor P-TEFb: interactions with human immunodeficiency virus type 1 tat and carboxy-terminal domain substrate. Ramanathan Y; Reza SM; Young TM; Mathews MB; Pe'ery T J Virol; 1999 Jul; 73(7):5448-58. PubMed ID: 10364292 [TBL] [Abstract][Full Text] [Related]
14. Cyclin-dependent kinase control of the initiation-to-elongation switch of RNA polymerase II. Larochelle S; Amat R; Glover-Cutter K; Sansó M; Zhang C; Allen JJ; Shokat KM; Bentley DL; Fisher RP Nat Struct Mol Biol; 2012 Nov; 19(11):1108-15. PubMed ID: 23064645 [TBL] [Abstract][Full Text] [Related]
15. Phosphorylation of the RNA polymerase II carboxyl-terminal domain by CDK9 is directly responsible for human immunodeficiency virus type 1 Tat-activated transcriptional elongation. Kim YK; Bourgeois CF; Isel C; Churcher MJ; Karn J Mol Cell Biol; 2002 Jul; 22(13):4622-37. PubMed ID: 12052871 [TBL] [Abstract][Full Text] [Related]
16. Transcriptional activity of positive transcription elongation factor b kinase in vivo requires the C-terminal domain of RNA polymerase II. Napolitano G; Majello B; Licciardo P; Giordano A; Lania L Gene; 2000 Aug; 254(1-2):139-45. PubMed ID: 10974544 [TBL] [Abstract][Full Text] [Related]
17. A Cdk9-PP1 switch regulates the elongation-termination transition of RNA polymerase II. Parua PK; Booth GT; Sansó M; Benjamin B; Tanny JC; Lis JT; Fisher RP Nature; 2018 Jun; 558(7710):460-464. PubMed ID: 29899453 [TBL] [Abstract][Full Text] [Related]
18. Evidence that P-TEFb alleviates the negative effect of DSIF on RNA polymerase II-dependent transcription in vitro. Wada T; Takagi T; Yamaguchi Y; Watanabe D; Handa H EMBO J; 1998 Dec; 17(24):7395-403. PubMed ID: 9857195 [TBL] [Abstract][Full Text] [Related]
19. TFIIH and P-TEFb coordinate transcription with capping enzyme recruitment at specific genes in fission yeast. Viladevall L; St Amour CV; Rosebrock A; Schneider S; Zhang C; Allen JJ; Shokat KM; Schwer B; Leatherwood JK; Fisher RP Mol Cell; 2009 Mar; 33(6):738-51. PubMed ID: 19328067 [TBL] [Abstract][Full Text] [Related]
20. Bur1 kinase is required for efficient transcription elongation by RNA polymerase II. Keogh MC; Podolny V; Buratowski S Mol Cell Biol; 2003 Oct; 23(19):7005-18. PubMed ID: 12972617 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]