BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 24879598)

  • 21. Jerusalem artichoke powder: a useful material in producing high-optical-purity l-lactate using an efficient sugar-utilizing thermophilic Bacillus coagulans strain.
    Wang L; Xue Z; Zhao B; Yu B; Xu P; Ma Y
    Bioresour Technol; 2013 Feb; 130():174-80. PubMed ID: 23306126
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fed-batch fermentation for enhanced lactic acid production from glucose/xylose mixture without carbon catabolite repression.
    Abdel-Rahman MA; Xiao Y; Tashiro Y; Wang Y; Zendo T; Sakai K; Sonomoto K
    J Biosci Bioeng; 2015 Feb; 119(2):153-8. PubMed ID: 25280397
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biodetoxification of Phenolic Inhibitors from Lignocellulose Pretreatment using
    Xie Y; Hu Q; Feng G; Jiang X; Hu J; He M; Hu G; Zhao S; Liang Y; Ruan Z; Peng N
    Molecules; 2018 Oct; 23(10):. PubMed ID: 30322101
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bacillus sp. strain P38: an efficient producer of L-lactate from cellulosic hydrolysate, with high tolerance for 2-furfural.
    Peng L; Wang L; Che C; Yang G; Yu B; Ma Y
    Bioresour Technol; 2013 Dec; 149():169-76. PubMed ID: 24096283
    [TBL] [Abstract][Full Text] [Related]  

  • 25. L: (+)-Lactic acid production from non-food carbohydrates by thermotolerant Bacillus coagulans.
    Ou MS; Ingram LO; Shanmugam KT
    J Ind Microbiol Biotechnol; 2011 May; 38(5):599-605. PubMed ID: 20694852
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Isolation and characterization of acid-tolerant, thermophilic bacteria for effective fermentation of biomass-derived sugars to lactic acid.
    Patel MA; Ou MS; Harbrucker R; Aldrich HC; Buszko ML; Ingram LO; Shanmugam KT
    Appl Environ Microbiol; 2006 May; 72(5):3228-35. PubMed ID: 16672461
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Efficient production of L-lactic acid by newly isolated thermophilic Bacillus coagulans WCP10-4 with high glucose tolerance.
    Zhou X; Ye L; Wu JC
    Appl Microbiol Biotechnol; 2013 May; 97(10):4309-14. PubMed ID: 23354450
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Efficient production of 2,3-butanediol from corn stover hydrolysate by using a thermophilic Bacillus licheniformis strain.
    Li L; Li K; Wang K; Chen C; Gao C; Ma C; Xu P
    Bioresour Technol; 2014 Oct; 170():256-261. PubMed ID: 25151068
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lactic acid production by Lactobacillus sp. RKY2 in a cell-recycle continuous fermentation using lignocellulosic hydrolyzates as inexpensive raw materials.
    Wee YJ; Ryu HW
    Bioresour Technol; 2009 Sep; 100(18):4262-70. PubMed ID: 19394215
    [TBL] [Abstract][Full Text] [Related]  

  • 30. d-lactic acid production from renewable lignocellulosic biomass via genetically modified Lactobacillus plantarum.
    Zhang Y; Kumar A; Hardwidge PR; Tanaka T; Kondo A; Vadlani PV
    Biotechnol Prog; 2016 Mar; 32(2):271-8. PubMed ID: 26700935
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced L-(+)-lactic acid production by an adapted strain of Rhizopus oryzae using corncob hydrolysate.
    Bai DM; Li SZ; Liu ZL; Cui ZF
    Appl Biochem Biotechnol; 2008 Jan; 144(1):79-85. PubMed ID: 18415989
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fermentative lactic acid production from coffee pulp hydrolysate using Bacillus coagulans at laboratory and pilot scales.
    Pleissner D; Neu AK; Mehlmann K; Schneider R; Puerta-Quintero GI; Venus J
    Bioresour Technol; 2016 Oct; 218():167-73. PubMed ID: 27359065
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Conversion of biomass hydrolysates and other substrates to ethanol and other chemicals by Lactobacillus buchneri*.
    Liu S; Bischoff KM; Hughes SR; Leathers TD; Price NP; Qureshi N; Rich JO
    Lett Appl Microbiol; 2009 Mar; 48(3):337-42. PubMed ID: 19187511
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Production of lactic acid from hemicellulose extracts by Bacillus coagulans MXL-9.
    Walton SL; Bischoff KM; van Heiningen AR; van Walsum GP
    J Ind Microbiol Biotechnol; 2010 Aug; 37(8):823-30. PubMed ID: 20454831
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lactic acid production from xylose by the fungus Rhizopus oryzae.
    Maas RH; Bakker RR; Eggink G; Weusthuis RA
    Appl Microbiol Biotechnol; 2006 Oct; 72(5):861-8. PubMed ID: 16528511
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Model-based characterisation of growth performance and l-lactic acid production with high optical purity by thermophilic Bacillus coagulans in a lignin-supplemented mixed substrate medium.
    Glaser R; Venus J
    N Biotechnol; 2017 Jul; 37(Pt B):180-193. PubMed ID: 28188935
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enterococcus faecium QU 50: a novel thermophilic lactic acid bacterium for high-yield l-lactic acid production from xylose.
    Abdel-Rahman MA; Tashiro Y; Zendo T; Sakai K; Sonomoto K
    FEMS Microbiol Lett; 2015 Jan; 362(2):1-7. PubMed ID: 25670701
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High temperature lactic acid production by Bacillus coagulans immobilized in LentiKats.
    Rosenberg M; Rebros M; Kristofíková L; Malátová K
    Biotechnol Lett; 2005 Dec; 27(23-24):1943-7. PubMed ID: 16328994
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metabolic Engineering of Escherichia coli K12 for Homofermentative Production of L-Lactate from Xylose.
    Jiang T; Zhang C; He Q; Zheng Z; Ouyang J
    Appl Biochem Biotechnol; 2018 Feb; 184(2):703-715. PubMed ID: 28840503
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Engineering wild-type robust Pediococcus acidilactici strain for high titer L- and D-lactic acid production from corn stover feedstock.
    Yi X; Zhang P; Sun J; Tu Y; Gao Q; Zhang J; Bao J
    J Biotechnol; 2016 Jan; 217():112-21. PubMed ID: 26616423
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.