These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. A new diamond biosensor with integrated graphitic microchannels for detecting quantal exocytic events from chromaffin cells. Picollo F; Gosso S; Vittone E; Pasquarelli A; Carbone E; Olivero P; Carabelli V Adv Mater; 2013 Sep; 25(34):4696-700. PubMed ID: 23847004 [TBL] [Abstract][Full Text] [Related]
9. Microwell device for targeting single cells to electrochemical microelectrodes for high-throughput amperometric detection of quantal exocytosis. Liu X; Barizuddin S; Shin W; Mathai CJ; Gangopadhyay S; Gillis KD Anal Chem; 2011 Apr; 83(7):2445-51. PubMed ID: 21355543 [TBL] [Abstract][Full Text] [Related]
10. Exploiting Microelectrode Geometry for Comprehensive Detection of Individual Exocytosis Events at Single Cells. De Alwis AC; Denison JD; Shah R; McCarty GS; Sombers LA ACS Sens; 2023 Aug; 8(8):3187-3194. PubMed ID: 37552870 [TBL] [Abstract][Full Text] [Related]
11. Controlled on-chip stimulation of quantal catecholamine release from chromaffin cells using photolysis of caged Ca2+ on transparent indium-tin-oxide microchip electrodes. Chen X; Gao Y; Hossain M; Gangopadhyay S; Gillis KD Lab Chip; 2008 Jan; 8(1):161-9. PubMed ID: 18094774 [TBL] [Abstract][Full Text] [Related]
12. Quantal Release of Dopamine and Action Potential Firing Detected in Midbrain Neurons by Multifunctional Diamond-Based Microarrays. Tomagra G; Picollo F; Battiato A; Picconi B; De Marchis S; Pasquarelli A; Olivero P; Marcantoni A; Calabresi P; Carbone E; Carabelli V Front Neurosci; 2019; 13():288. PubMed ID: 31024230 [TBL] [Abstract][Full Text] [Related]
13. Dual action of leptin on rest-firing and stimulated catecholamine release via phosphoinositide 3-kinase-driven BK channel up-regulation in mouse chromaffin cells. Gavello D; Vandael D; Gosso S; Carbone E; Carabelli V J Physiol; 2015 Nov; 593(22):4835-53. PubMed ID: 26282459 [TBL] [Abstract][Full Text] [Related]
14. Methodologies for Detecting Quantal Exocytosis in Adrenal Chromaffin Cells Through Diamond-Based MEAs. Tomagra G; Franchino C; Carbone E; Marcantoni A; Pasquarelli A; Picollo F; Carabelli V Methods Mol Biol; 2023; 2565():213-221. PubMed ID: 36205897 [TBL] [Abstract][Full Text] [Related]
15. Improved surface-patterned platinum microelectrodes for the study of exocytotic events. Berberian K; Kisler K; Fang Q; Lindau M Anal Chem; 2009 Nov; 81(21):8734-40. PubMed ID: 19780579 [TBL] [Abstract][Full Text] [Related]
16. Quantal Release Analysis of Electrochemically Active Molecules Using Single-Cell Amperometry. Machado JD; Montenegro P; Domínguez N Methods Mol Biol; 2023; 2565():203-211. PubMed ID: 36205896 [TBL] [Abstract][Full Text] [Related]
17. Invariance of exocytotic events detected by amperometry as a function of the carbon fiber microelectrode diameter. Amatore C; Arbault S; Bouret Y; Guille M; Lemaître F; Verchier Y Anal Chem; 2009 Apr; 81(8):3087-93. PubMed ID: 19290664 [TBL] [Abstract][Full Text] [Related]
18. Characterization of exocytotic events from single PC12 cells: amperometric studies in native PC12h, DA-loaded PC12h and bovine adrenal chromaffin cells. Sasakawa N; Murayama N; Kumakura K Cell Mol Neurobiol; 2005 Jun; 25(3-4):777-87. PubMed ID: 16075391 [TBL] [Abstract][Full Text] [Related]
19. Interplay between membrane dynamics, diffusion and swelling pressure governs individual vesicular exocytotic events during release of adrenaline by chromaffin cells. Amatore C; Bouret Y; Travis ER; Wightman RM Biochimie; 2000 May; 82(5):481-96. PubMed ID: 10865134 [TBL] [Abstract][Full Text] [Related]