These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 24879991)
1. PirB-Cry2Aa hybrid protein exhibits enhanced insecticidal activity against Spodoptera exigua larvae. Hu X; Liu Z; Li Y; Ding X; Xia L; Hu S J Invertebr Pathol; 2014 Jul; 120():40-2. PubMed ID: 24879991 [TBL] [Abstract][Full Text] [Related]
2. Combinatorial effect of Bacillus thuringiensis kurstaki and Photorhabdus luminescens against Spodoptera littoralis (Lepidoptera: Noctuidae). Benfarhat-Touzri D; Ben Amira A; Ben khedher S; Givaudan A; Jaoua S; Tounsi S J Basic Microbiol; 2014 Nov; 54(11):1160-5. PubMed ID: 23908000 [TBL] [Abstract][Full Text] [Related]
3. Enhancing Cry1Ac toxicity by expression of the Helicoverpa armigera cadherin fragment in Bacillus thuringiensis. Peng D; Xu X; Ruan L; Yu Z; Sun M Res Microbiol; 2010 Jun; 161(5):383-9. PubMed ID: 20438837 [TBL] [Abstract][Full Text] [Related]
4. Solubility enhancement of Cry2Aa crystal through carboxy-terminal extension and synergism between the chimeric protein and Cry1Ac. Qiu X; Lu X; Ren X; Li R; Wu B; Yang S; Qi L; Mo X; Ding X; Xia L; Sun Y Appl Microbiol Biotechnol; 2019 Mar; 103(5):2243-2250. PubMed ID: 30617818 [TBL] [Abstract][Full Text] [Related]
5. Photorhabdus luminescens PirAB-fusion protein exhibits both cytotoxicity and insecticidal activity. Li Y; Hu X; Zhang X; Liu Z; Ding X; Xia L; Hu S FEMS Microbiol Lett; 2014 Jul; 356(1):23-31. PubMed ID: 24840022 [TBL] [Abstract][Full Text] [Related]
6. Cadherin is involved in the action of Bacillus thuringiensis toxins Cry1Ac and Cry2Aa in the beet armyworm, Spodoptera exigua. Qiu L; Hou L; Zhang B; Liu L; Li B; Deng P; Ma W; Wang X; Fabrick JA; Chen L; Lei C J Invertebr Pathol; 2015 May; 127():47-53. PubMed ID: 25754522 [TBL] [Abstract][Full Text] [Related]
7. Towards novel Cry toxins with enhanced toxicity/broader: a new chimeric Cry4Ba / Cry1Ac toxin. Zghal RZ; Elleuch J; Ben Ali M; Darriet F; Rebaï A; Chandre F; Jaoua S; Tounsi S Appl Microbiol Biotechnol; 2017 Jan; 101(1):113-122. PubMed ID: 27538933 [TBL] [Abstract][Full Text] [Related]
8. Coexpression of the silent cry2Ab27 together with cry1 genes in Bacillus thuringiensis subsp. aizawai SP41 leads to formation of amorphous crystal toxin and enhanced toxicity against Helicoverpa armigera. Somwatcharajit R; Tiantad I; Panbangred W J Invertebr Pathol; 2014 Feb; 116():48-55. PubMed ID: 24412546 [TBL] [Abstract][Full Text] [Related]
9. Toxicity of Bacillus thuringiensis Cry proteins to Helicoverpa armigera (Lepidoptera: Noctuidae) in South Africa. Li H; Bouwer G J Invertebr Pathol; 2012 Jan; 109(1):110-6. PubMed ID: 22019386 [TBL] [Abstract][Full Text] [Related]
10. A novel Cry9Aa with increased toxicity for Spodoptera exigua (Hübner). Naimov S; Nedyalkova R; Staykov N; Weemen-Hendriks M; Minkov I; de Maagd RA J Invertebr Pathol; 2014 Jan; 115():99-101. PubMed ID: 24286660 [TBL] [Abstract][Full Text] [Related]
11. The synergistic activity between Cry1Aa and Cry1c from Bacillus thuringiensis against Spodoptera exigua and Helicoverpa armigera. Xue JL; Cai QX; Zheng DS; Yuan ZM Lett Appl Microbiol; 2005; 40(6):460-5. PubMed ID: 15892743 [TBL] [Abstract][Full Text] [Related]
12. Broad-spectrum cross-resistance in Spodoptera exigua from selection with a marginally toxic Cry protein. Hernández-Martínez P; Ferré J; Escriche B Pest Manag Sci; 2009 Jun; 65(6):645-50. PubMed ID: 19253909 [TBL] [Abstract][Full Text] [Related]
13. A Cry1Ac toxin variant generated by directed evolution has enhanced toxicity against Lepidopteran insects. Shan S; Zhang Y; Ding X; Hu S; Sun Y; Yu Z; Liu S; Zhu Z; Xia L Curr Microbiol; 2011 Feb; 62(2):358-65. PubMed ID: 20669019 [TBL] [Abstract][Full Text] [Related]
14. Response of larval Ephestia kuehniella (Lepidoptera: Pyralidae) to individual Bacillus thuringiensis kurstaki toxins mixed with Xenorhabdus nematophila. BenFarhat D; Dammak M; Khedher SB; Mahfoudh S; Kammoun S; Tounsi S J Invertebr Pathol; 2013 Sep; 114(1):71-5. PubMed ID: 23747825 [TBL] [Abstract][Full Text] [Related]
15. Increase in insecticidal toxicity by fusion of the cry1Ac gene from Bacillus thuringiensis with the neurotoxin gene hwtx-I. Xia L; Long X; Ding X; Zhang Y Curr Microbiol; 2009 Jan; 58(1):52-7. PubMed ID: 18953606 [TBL] [Abstract][Full Text] [Related]
16. Vegetative insecticidal protein enhancing the toxicity of Bacillus thuringiensis subsp kurstaki against Spodoptera exigua. Zhu C; Ruan L; Peng D; Yu Z; Sun M Lett Appl Microbiol; 2006 Feb; 42(2):109-14. PubMed ID: 16441373 [TBL] [Abstract][Full Text] [Related]
17. Efficient constitutive expression of chitinase in the mother cell of Bacillus thuringiensis and its potential to enhance the toxicity of Cry1Ac protoxin. Hu SB; Liu P; Ding XZ; Yan L; Sun YJ; Zhang YM; Li WP; Xia LQ Appl Microbiol Biotechnol; 2009 Apr; 82(6):1157-67. PubMed ID: 19277644 [TBL] [Abstract][Full Text] [Related]
18. Selection and characterisation of an HD1-like Bacillus thuringiensis isolate with a high insecticidal activity against Spodoptera littoralis (Lepidoptera: Noctuidae). Azzouz H; Kebaili-Ghribi J; ben Farhat-Touzri D; Daoud F; Fakhfakh I; Tounsi S; Jaoua S Pest Manag Sci; 2014 Aug; 70(8):1192-201. PubMed ID: 24124020 [TBL] [Abstract][Full Text] [Related]
19. The Photorhabdus Pir toxins are similar to a developmentally regulated insect protein but show no juvenile hormone esterase activity. Waterfield N; Kamita SG; Hammock BD; ffrench-Constant R FEMS Microbiol Lett; 2005 Apr; 245(1):47-52. PubMed ID: 15796978 [TBL] [Abstract][Full Text] [Related]
20. Constructing Bacillus thuringiensis strain that co-expresses Cry2Aa and chitinase. Hu S; Zhang X; Li Y; Ding X; Hu X; Yang Q; Xia L Biotechnol Lett; 2013 Jul; 35(7):1045-51. PubMed ID: 23515891 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]