BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 24880003)

  • 1. Bioactive glasses with improved processing. Part 1. Thermal properties, ion release and apatite formation.
    Groh D; Döhler F; Brauer DS
    Acta Biomater; 2014 Oct; 10(10):4465-73. PubMed ID: 24880003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of low amounts of zinc or magnesium substitution on ion release and apatite formation of Bioglass 45S5.
    Wetzel R; Bartzok O; Brauer DS
    J Mater Sci Mater Med; 2020 Oct; 31(10):86. PubMed ID: 33037502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A review of bioactive glasses: Their structure, properties, fabrication and apatite formation.
    Kaur G; Pandey OP; Singh K; Homa D; Scott B; Pickrell G
    J Biomed Mater Res A; 2014 Jan; 102(1):254-74. PubMed ID: 23468256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly degradable porous melt-derived bioactive glass foam scaffolds for bone regeneration.
    Nommeots-Nomm A; Labbaf S; Devlin A; Todd N; Geng H; Solanki AK; Tang HM; Perdika P; Pinna A; Ejeian F; Tsigkou O; Lee PD; Esfahani MHN; Mitchell CA; Jones JR
    Acta Biomater; 2017 Jul; 57():449-461. PubMed ID: 28457960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alkali-free bioactive glasses for bone tissue engineering: a preliminary investigation.
    Goel A; Kapoor S; Rajagopal RR; Pascual MJ; Kim HW; Ferreira JM
    Acta Biomater; 2012 Jan; 8(1):361-72. PubMed ID: 21925626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of crystallization of bioactive bioglass 45S5 on apatite formation and degradation.
    Plewinski M; Schickle K; Lindner M; Kirsten A; Weber M; Fischer H
    Dent Mater; 2013 Dec; 29(12):1256-64. PubMed ID: 24157243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of sodium content on the properties of bioactive glasses for use in air abrasion.
    Farooq I; Tylkowski M; Müller S; Janicki T; Brauer DS; Hill RG
    Biomed Mater; 2013 Dec; 8(6):065008. PubMed ID: 24287337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High phosphate content significantly increases apatite formation of fluoride-containing bioactive glasses.
    Mneimne M; Hill RG; Bushby AJ; Brauer DS
    Acta Biomater; 2011 Apr; 7(4):1827-34. PubMed ID: 21115144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluoride-containing bioactive glasses: effect of glass design and structure on degradation, pH and apatite formation in simulated body fluid.
    Brauer DS; Karpukhina N; O'Donnell MD; Law RV; Hill RG
    Acta Biomater; 2010 Aug; 6(8):3275-82. PubMed ID: 20132911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heat treatment of Na2O-CaO-P2O5-SiO2 bioactive glasses: densification processes and postsintering bioactivity.
    Sola A; Bellucci D; Raucci MG; Zeppetelli S; Ambrosio L; Cannillo V
    J Biomed Mater Res A; 2012 Feb; 100(2):305-22. PubMed ID: 22052581
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of sintering temperature variations on fabrication of 45S5 bioactive glass-ceramics using rice husk as a source for silica.
    Leenakul W; Tunkasiri T; Tongsiri N; Pengpat K; Ruangsuriya J
    Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():695-704. PubMed ID: 26838899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of strontium for calcium substitution in bioactive glasses on degradation, ion release and apatite formation.
    Fredholm YC; Karpukhina N; Brauer DS; Jones JR; Law RV; Hill RG
    J R Soc Interface; 2012 May; 9(70):880-9. PubMed ID: 21993007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zinc- and Fluoride-Releasing Bioactive Glass as a Novel Bone Substitute.
    Kondo T; Otake K; Kakinuma H; Sato Y; Ambo S; Egusa H
    J Dent Res; 2024 May; 103(5):526-535. PubMed ID: 38581240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Indirect selective laser sintering of an apatite-mullite glass-ceramic for potential use in bone replacement applications.
    Goodridge RD; Dalgarno KW; Wood DJ
    Proc Inst Mech Eng H; 2006 Jan; 220(1):57-68. PubMed ID: 16459446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of bone regeneration and graft material resorption using surface-modified bioactive glass in cortical and human maxillary cystic bone defects.
    El-Ghannam A; Amin H; Nasr T; Shama A
    Int J Oral Maxillofac Implants; 2004; 19(2):184-91. PubMed ID: 15101588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro biocompatibility of fluorcanasite glass-ceramics for bone tissue repair.
    Bandyopadhyay-Ghosh S; Reaney IM; Brook IM; Hurrell-Gillingham K; Johnson A; Hatton PV
    J Biomed Mater Res A; 2007 Jan; 80(1):175-83. PubMed ID: 17019726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluoride-containing bioactive glasses: Glass design, structure, bioactivity, cellular interactions, and recent developments.
    Shah FA
    Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():1279-89. PubMed ID: 26478431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of pH and ionic strength on the reactivity of Bioglass 45S5.
    Cerruti M; Greenspan D; Powers K
    Biomaterials; 2005 May; 26(14):1665-74. PubMed ID: 15576140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioactivity of gel-glass powders in the CaO-SiO2 system: a comparison with ternary (CaO-P2O5-SiO2) and quaternary glasses (SiO2-CaO-P2O5-Na2O).
    Saravanapavan P; Jones JR; Pryce RS; Hench LL
    J Biomed Mater Res A; 2003 Jul; 66(1):110-9. PubMed ID: 12833437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Review of bioactive glass: from Hench to hybrids.
    Jones JR
    Acta Biomater; 2013 Jan; 9(1):4457-86. PubMed ID: 22922331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.