These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 24880090)

  • 61. STAT1 plays a role in TLR signal transduction and inflammatory responses.
    Luu K; Greenhill CJ; Majoros A; Decker T; Jenkins BJ; Mansell A
    Immunol Cell Biol; 2014 Oct; 92(9):761-9. PubMed ID: 25027037
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Negative regulation of Toll-like receptor-4 signaling through the binding of glycosylphosphatidylinositol-anchored glycoprotein, CD14, with the sialic acid-binding lectin, CD33.
    Ishida A; Akita K; Mori Y; Tanida S; Toda M; Inoue M; Nakada H
    J Biol Chem; 2014 Sep; 289(36):25341-50. PubMed ID: 25059667
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Nuclear factor erythroid 2-related factor 2 regulates toll-like receptor 4 innate responses in mouse liver ischemia-reperfusion injury through Akt-forkhead box protein O1 signaling network.
    Huang J; Yue S; Ke B; Zhu J; Shen XD; Zhai Y; Yamamoto M; Busuttil RW; Kupiec-Weglinski JW
    Transplantation; 2014 Oct; 98(7):721-8. PubMed ID: 25171655
    [TBL] [Abstract][Full Text] [Related]  

  • 64. c-Jun N terminal kinase modulates NOX-4 derived ROS production and myofibroblasts differentiation in human breast stromal cells.
    Tobar N; Toyos M; Urra C; Méndez N; Arancibia R; Smith PC; Martínez J
    BMC Cancer; 2014 Aug; 14():640. PubMed ID: 25175743
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Phosphorylation status determines the opposing functions of Smad2/Smad3 as STAT3 cofactors in TH17 differentiation.
    Yoon JH; Sudo K; Kuroda M; Kato M; Lee IK; Han JS; Nakae S; Imamura T; Kim J; Ju JH; Kim DK; Matsuzaki K; Weinstein M; Matsumoto I; Sumida T; Mamura M
    Nat Commun; 2015 Jul; 6():7600. PubMed ID: 26194464
    [TBL] [Abstract][Full Text] [Related]  

  • 66. FoxO1 Inhibitors: The Future Medicine for Metabolic Disorders?
    Pandey A; Kumar GS; Kadakol A; Malek V; Gaikwad AB
    Curr Diabetes Rev; 2016; 12(3):223-30. PubMed ID: 26239835
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Sex-Based Selectivity of PPARγ Regulation in Th1, Th2, and Th17 Differentiation.
    Park HJ; Park HS; Lee JU; Bothwell AL; Choi JM
    Int J Mol Sci; 2016 Aug; 17(8):. PubMed ID: 27548145
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Dermal γδ T Cells Do Not Freely Re-Circulate Out of Skin and Produce IL-17 to Promote Neutrophil Infiltration during Primary Contact Hypersensitivity.
    Jiang X; Park CO; Geddes Sweeney J; Yoo MJ; Gaide O; Kupper TS
    PLoS One; 2017; 12(1):e0169397. PubMed ID: 28081153
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Nrf2 Promotes Keratinocyte Proliferation in Psoriasis through Up-Regulation of Keratin 6, Keratin 16, and Keratin 17.
    Yang L; Fan X; Cui T; Dang E; Wang G
    J Invest Dermatol; 2017 Oct; 137(10):2168-2176. PubMed ID: 28576737
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Interactions of TLR4 and PPARγ, Dependent on AMPK Signalling Pathway Contribute to Anti-Inflammatory Effects of Vaccariae Hypaphorine in Endothelial Cells.
    Sun H; Zhu X; Lin W; Zhou Y; Cai W; Qiu L
    Cell Physiol Biochem; 2017; 42(3):1227-1239. PubMed ID: 28683454
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Role of STAT3 in skin fibrosis and transforming growth factor beta signalling.
    Pedroza M; To S; Assassi S; Wu M; Tweardy D; Agarwal SK
    Rheumatology (Oxford); 2018 Oct; 57(10):1838-1850. PubMed ID: 29029263
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Human Skin Permeation Studies with PPARγ Agonist to Improve Its Permeability and Efficacy in Inflammatory Processes.
    Silva-Abreu M; Espinoza LC; Rodríguez-Lagunas MJ; Fábrega MJ; Espina M; García ML; Calpena AC
    Int J Mol Sci; 2017 Nov; 18(12):. PubMed ID: 29182532
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Pemphigus vulgaris antibodies target the mitochondrial nicotinic acetylcholine receptors that protect keratinocytes from apoptolysis.
    Chernyavsky A; Chen Y; Wang PH; Grando SA
    Int Immunopharmacol; 2015 Nov; 29(1):76-80. PubMed ID: 25998908
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Nicotine facilitates nicotinic acetylcholine receptor targeting to mitochondria but makes them less susceptible to selective ligands.
    Uspenska K; Lykhmus O; Gergalova G; Chernyshov V; Arias HR; Komisarenko S; Skok M
    Neurosci Lett; 2017 Aug; 656():43-50. PubMed ID: 28700952
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Positive allosteric modulators of α7* or β2* nicotinic acetylcholine receptors trigger different kinase pathways in mitochondria.
    Uspenska K; Lykhmus O; Arias HR; Pons S; Maskos U; Komisarenko S; Skok M
    Int J Biochem Cell Biol; 2018 Jun; 99():226-235. PubMed ID: 29704624
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Nicotinic receptors modulate the onset of reactive oxygen species production and mitochondrial dysfunction evoked by glutamate uptake block in the rat hypoglossal nucleus.
    Tortora M; Corsini S; Nistri A
    Neurosci Lett; 2017 Feb; 639():43-48. PubMed ID: 28007649
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Different Effects of Nicotine and N-Stearoyl-ethanolamine on Episodic Memory and Brain Mitochondria of α7 Nicotinic Acetylcholine Receptor Knockout Mice.
    Lykhmus O; Kalashnyk O; Uspenska K; Horid'ko T; Kosyakova H; Komisarenko S; Skok M
    Biomolecules; 2020 Feb; 10(2):. PubMed ID: 32028688
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Nicotine induces mitochondrial fission through mitofusin degradation in human multipotent embryonic carcinoma cells.
    Hirata N; Yamada S; Asanagi M; Sekino Y; Kanda Y
    Biochem Biophys Res Commun; 2016 Feb; 470(2):300-305. PubMed ID: 26774337
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Mitogen-activated protein kinase signaling pathways are involved in regulating α7 nicotinic acetylcholine receptor-mediated amyloid-β uptake in SH-SY5Y cells.
    Yang WN; Ma KG; Chen XL; Shi LL; Bu G; Hu XD; Han H; Liu Y; Qian YH
    Neuroscience; 2014 Oct; 278():276-90. PubMed ID: 25168732
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The p38 mitogen activated protein kinase regulates β-amyloid protein internalization through the α7 nicotinic acetylcholine receptor in mouse brain.
    Ma KG; Lv J; Yang WN; Chang KW; Hu XD; Shi LL; Zhai WY; Zong HF; Qian YH
    Brain Res Bull; 2018 Mar; 137():41-52. PubMed ID: 29128415
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.