These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 2488024)

  • 1. Comparison of endogenous and exogenous photosensitization in the lens using in vitro and photophysical studies.
    Roberts JE; Dillon J
    Lens Eye Toxic Res; 1989; 6(1-2):309-18. PubMed ID: 2488024
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tryptophan metabolites from young human lenses and the photooxidation of ascorbic acid by UVA light.
    Ortwerth BJ; Bhattacharyya J; Shipova E
    Invest Ophthalmol Vis Sci; 2009 Jul; 50(7):3311-9. PubMed ID: 19264899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photochemistry of proteins: a review.
    Grossweiner LI
    Curr Eye Res; 1984 Jan; 3(1):137-44. PubMed ID: 6360538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo evaluation of lenticular phototoxicity.
    Lerman S
    Lens Eye Toxic Res; 1989; 6(1-2):301-8. PubMed ID: 2488023
    [No Abstract]   [Full Text] [Related]  

  • 5. Photosensitization of the lens by 8-methoxypsoralen.
    Lerman S; Jocoy M; Borkman RF
    Invest Ophthalmol Vis Sci; 1977 Nov; 16(11):1065-8. PubMed ID: 914480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tryptophan-derived ultraviolet filter compounds covalently bound to lens proteins are photosensitizers of oxidative damage.
    Mizdrak J; Hains PG; Truscott RJ; Jamie JF; Davies MJ
    Free Radic Biol Med; 2008 Mar; 44(6):1108-19. PubMed ID: 18206985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lens alpha-crystallin and hypericin: a photophysical mechanism explains observed lens.
    Trevithick-Sutton CC; Chin KK; Contos SD; Foote CS
    Photochem Photobiol; 2004; 80(3):444-9. PubMed ID: 15623328
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Age-related changes in the absorption characteristics of the primate lens.
    Gaillard ER; Zheng L; Merriam JC; Dillon J
    Invest Ophthalmol Vis Sci; 2000 May; 41(6):1454-9. PubMed ID: 10798662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Minimization of photooxidative insult to calf lens protein irradiated with near UV-light in the presence of pigmented glucosides derived from human lens protein.
    Inoue A; Sasaki D; Satoh K
    Exp Eye Res; 2004 Dec; 79(6):833-7. PubMed ID: 15642320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calpain-induced light scattering by crystallins from three rodent species.
    Fukiage C; Azuma M; Nakamura Y; Tamada Y; Shearer TR
    Exp Eye Res; 1997 Dec; 65(6):757-70. PubMed ID: 9441699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The endogenous and exogenous mechanisms for protection from ultraviolet irradiation in the lens.
    Colitz CM; Bomser JA; Kusewitt DF
    Int Ophthalmol Clin; 2005; 45(1):141-55. PubMed ID: 15632531
    [No Abstract]   [Full Text] [Related]  

  • 12. Development and repair of cataract induced by ultraviolet radiation.
    Michael R
    Ophthalmic Res; 2000; 32 Suppl 1():ii-iii; 1-44. PubMed ID: 10817682
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Screening for potential in vivo phototoxicity in the lens/retina.
    Roberts JE; Dillon J
    Lens Eye Toxic Res; 1990; 7(3-4):655-66. PubMed ID: 2100184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein-bound kynurenine is a photosensitizer of oxidative damage.
    Parker NR; Jamie JF; Davies MJ; Truscott RJ
    Free Radic Biol Med; 2004 Nov; 37(9):1479-89. PubMed ID: 15454288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo and photophysical studies on photooxidative damage to lens proteins and their protection by radioprotectors.
    Roberts JE; Kinley JS; Young AR; Jenkins G; Atherton SJ; Dillon J
    Photochem Photobiol; 1991 Jan; 53(1):33-8. PubMed ID: 1851303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alterations in the light transmission through single lens fibers during calcium-mediated disintegrative globulization.
    Bhatnagar A; Dhir P; Wang LF; Ansari NH; Lo W; Srivastava SK
    Invest Ophthalmol Vis Sci; 1997 Mar; 38(3):586-92. PubMed ID: 9071211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preventive role of lens antioxidant defense mechanism against riboflavin-mediated sunlight damaging of lens crystallins.
    Anbaraki A; Khoshaman K; Ghasemi Y; Yousefi R
    Int J Biol Macromol; 2016 Oct; 91():895-904. PubMed ID: 27316765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photolytic changes in lens proteins.
    Dillon J
    Curr Eye Res; 1984 Jan; 3(1):145-50. PubMed ID: 6690217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of ultraviolet induced photo-kinetics for lens-derived and recombinant beta-crystallins.
    Ostrovsky MA; Sergeev YV; Atkinson DB; Soustov LV; Hejtmancik JF
    Mol Vis; 2002 Mar; 8():72-8. PubMed ID: 11951082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The photochemical attachment of the O-glucoside of 3-hydroxykynurenine to alpha-crystallin: a model for lenticular aging.
    Dillon J; Skonieczna M; Mandal K; Paik D
    Photochem Photobiol; 1999 Feb; 69(2):248-53. PubMed ID: 10048317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.