These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 24880249)
21. Functional Analysis of the Exocyst Subunit Sec15 in Candida albicans. Chavez-Dozal AA; Bernardo SM; Rane HS; Lee SA Eukaryot Cell; 2015 Dec; 14(12):1228-39. PubMed ID: 26453654 [TBL] [Abstract][Full Text] [Related]
22. Changes in glutathione-dependent redox status and mitochondrial energetic strategies are part of the adaptive response during the filamentation process in Candida albicans. Guedouari H; Gergondey R; Bourdais A; Vanparis O; Bulteau AL; Camadro JM; Auchère F Biochim Biophys Acta; 2014 Sep; 1842(9):1855-69. PubMed ID: 25018088 [TBL] [Abstract][Full Text] [Related]
23. TUP1-mediated filamentation in Candida albicans leads to inability to colonize the mouse gut. Román E; Huertas B; Prieto D; Díez-Orejas R; Pla J Future Microbiol; 2018 Jun; 13():857-867. PubMed ID: 29877100 [TBL] [Abstract][Full Text] [Related]
24. Secreted aspartic proteases are not required for invasion of reconstituted human epithelia by Candida albicans. Lermann U; Morschhäuser J Microbiology (Reading); 2008 Nov; 154(Pt 11):3281-3295. PubMed ID: 18957582 [TBL] [Abstract][Full Text] [Related]
25. A transcription factor regulatory cascade controls secreted aspartic protease expression in Candida albicans. Dabas N; Morschhäuser J Mol Microbiol; 2008 Aug; 69(3):586-602. PubMed ID: 18547391 [TBL] [Abstract][Full Text] [Related]
26. The adaptive metabolic response involves specific protein glutathionylation during the filamentation process in the pathogen Candida albicans. Gergondey R; Garcia C; Serre V; Camadro JM; Auchère F Biochim Biophys Acta; 2016 Jul; 1862(7):1309-23. PubMed ID: 27083931 [TBL] [Abstract][Full Text] [Related]
27. Distinct roles of Candida albicans-specific genes in host-pathogen interactions. Wilson D; Mayer FL; Miramón P; Citiulo F; Slesiona S; Jacobsen ID; Hube B Eukaryot Cell; 2014 Aug; 13(8):977-89. PubMed ID: 24610660 [TBL] [Abstract][Full Text] [Related]
28. Endosomal and AP-3-dependent vacuolar trafficking routes make additive contributions to Candida albicans hyphal growth and pathogenesis. Palmer GE Eukaryot Cell; 2010 Nov; 9(11):1755-65. PubMed ID: 20870878 [TBL] [Abstract][Full Text] [Related]
29. Impact of glucose levels on expression of hypha-associated secreted aspartyl proteinases in Candida albicans. Buu LM; Chen YC J Biomed Sci; 2014 Mar; 21(1):22. PubMed ID: 24628998 [TBL] [Abstract][Full Text] [Related]
30. A functional analysis of the Candida albicans homolog of Saccharomyces cerevisiae VPS4. Lee SA; Jones J; Khalique Z; Kot J; Alba M; Bernardo S; Seghal A; Wong B FEMS Yeast Res; 2007 Sep; 7(6):973-85. PubMed ID: 17506830 [TBL] [Abstract][Full Text] [Related]
31. Amphotericin B resistance leads to enhanced proteinase and phospholipase activity and reduced germ tube formation in Candida albicans. Kumar R; Shukla PK Fungal Biol; 2010; 114(2-3):189-97. PubMed ID: 20943129 [TBL] [Abstract][Full Text] [Related]
32. Candida albicans triggers NLRP3-mediated pyroptosis in macrophages. Wellington M; Koselny K; Sutterwala FS; Krysan DJ Eukaryot Cell; 2014 Feb; 13(2):329-40. PubMed ID: 24376002 [TBL] [Abstract][Full Text] [Related]
33. Virulence and pathogenicity of a Candida albicans mutant with reduced filamentation. Peroumal D; Manohar K; Patel SK; Kumari P; Sahu SR; Acharya N Cell Microbiol; 2019 Dec; 21(12):e13103. PubMed ID: 31424154 [TBL] [Abstract][Full Text] [Related]
34. A family of oligopeptide transporters is required for growth of Candida albicans on proteins. Reuss O; Morschhäuser J Mol Microbiol; 2006 May; 60(3):795-812. PubMed ID: 16629678 [TBL] [Abstract][Full Text] [Related]
35. Differential regulation of the transcriptional repressor NRG1 accounts for altered host-cell interactions in Candida albicans and Candida dubliniensis. Moran GP; MacCallum DM; Spiering MJ; Coleman DC; Sullivan DJ Mol Microbiol; 2007 Nov; 66(4):915-29. PubMed ID: 17927699 [TBL] [Abstract][Full Text] [Related]
36. Role of Candida albicans-secreted aspartyl proteinases (Saps) in severe early childhood caries. Li W; Yu D; Gao S; Lin J; Chen Z; Zhao W Int J Mol Sci; 2014 Jun; 15(6):10766-79. PubMed ID: 24933640 [TBL] [Abstract][Full Text] [Related]
37. Arginine-induced germ tube formation in Candida albicans is essential for escape from murine macrophage line RAW 264.7. Ghosh S; Navarathna DH; Roberts DD; Cooper JT; Atkin AL; Petro TM; Nickerson KW Infect Immun; 2009 Apr; 77(4):1596-605. PubMed ID: 19188358 [TBL] [Abstract][Full Text] [Related]
39. Temperature-related expression of the vacuolar aspartic proteinase (APR1) gene and beta-N-acetylglucosaminidase (HEX1) gene during Candida albicans morphogenesis. Niimi M; Niimi K; Cannon RD FEMS Microbiol Lett; 1997 Mar; 148(2):247-54. PubMed ID: 9084153 [TBL] [Abstract][Full Text] [Related]
40. Function of Atg11 in non-selective autophagy and selective autophagy of Candida albicans. Cui L; Zhao H; Yin Y; Liang C; Mao X; Liu Y; Yu Q; Li M Biochem Biophys Res Commun; 2019 Sep; 516(4):1152-1158. PubMed ID: 31284951 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]