BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 24880300)

  • 1. Molecular near-field antenna effect in resonance hyper-Raman scattering: intermolecular vibronic intensity borrowing of solvent from solute through dipole-dipole and dipole-quadrupole interactions.
    Shimada R; Hamaguchi HO
    J Chem Phys; 2014 May; 140(20):204506. PubMed ID: 24880300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solute-solvent intermolecular vibronic coupling as manifested by the molecular near-field effect in resonance hyper-Raman scattering.
    Shimada R; Hamaguchi HO
    J Chem Phys; 2011 Jan; 134(3):034516. PubMed ID: 21261377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intensity enhancement and selective detection of proximate solvent molecules by molecular near-field effect in resonance hyper-Raman scattering.
    Shimada R; Kano H; Hamaguchi HO
    J Chem Phys; 2008 Jul; 129(2):024505. PubMed ID: 18624536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hyper-Raman spectroscopy of benzene and pyridine revisited.
    Inoue K; Morimoto T; Yokogawa D; Okuno M
    J Chem Phys; 2022 Aug; 157(5):054505. PubMed ID: 35933221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solute-solvent intermolecular interactions in supercritical Xe, SF6, CO2, and CHF3 investigated by Raman spectroscopy: greatest attractive energy observed in supercritical Xe.
    Kajiya D; Saitow K
    J Phys Chem B; 2010 Jul; 114(26):8659-66. PubMed ID: 20540499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Resonance Raman Spectral Properties Studies of Beta-carotene in Solution].
    Sun MJ; Liu S; Liu TY; Xu SN; Sun CL; Zhou M; Li ZW
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Jul; 35(7):1904-7. PubMed ID: 26717749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solvent effects on the resonance Raman and hyper-Raman spectra and first hyperpolarizability of N,N-dipropyl-p-nitroaniline.
    Shoute LC; Helburn R; Kelley AM
    J Phys Chem A; 2007 Feb; 111(7):1251-8. PubMed ID: 17256826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time dependent density functional theory investigation of the resonance Raman properties of the julolidinemalononitrile push-pull chromophore in various solvents.
    Guthmuller J; Champagne B
    J Chem Phys; 2007 Oct; 127(16):164507. PubMed ID: 17979360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An investigation of solute-solvent interactions in binary liquid mixtures of 3'-methoxyacetophenone: using Raman spectroscopy and DFT calculations.
    Yamini D; Ramakrishnan V
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Jul; 111():14-23. PubMed ID: 23602954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface-Enhanced Raman and Surface-Enhanced Hyper-Raman Scattering of Thiol-Functionalized Carotene.
    Gühlke M; Heiner Z; Kneipp J
    J Phys Chem C Nanomater Interfaces; 2016 Sep; 120(37):20702-20709. PubMed ID: 28077983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solvent effects on resonance Raman and hyper-Raman scatterings for a centrosymmetric distyrylbenzene and relationship to two-photon absorption.
    Leng W; Bazan GC; Kelley AM
    J Chem Phys; 2009 Jan; 130(4):044501. PubMed ID: 19191392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resonance Raman and vibronic absorption spectra with Duschinsky rotation from a time-dependent perspective: application to β-carotene.
    Banerjee S; Kröner D; Saalfrank P
    J Chem Phys; 2012 Dec; 137(22):22A534. PubMed ID: 23249071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solvatochromism of 9,10-phenanthrenequinone: an electronic and resonance Raman spectroscopic study.
    Ravi Kumar V; Rajkumar N; Umapathy S
    J Chem Phys; 2015 Jan; 142(2):024305. PubMed ID: 25591351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of attractive and repulsive interactions associated with ketones in supercritical CO2, based on Raman spectroscopy and theoretical calculations.
    Kajiya D; Saitow K
    J Chem Phys; 2013 Aug; 139(5):054509. PubMed ID: 23927272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced stimulated raman scattering of solvent due to anharmonic energy transfer from resonance raman solute molecules.
    Shi L; Gayen T; Budansky Y; Yoo K; Secor J; Harvey T; Harvey G; Shumyatsky P; Nolan D; Alfano R
    Opt Express; 2020 Jul; 28(15):21792-21804. PubMed ID: 32752451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anharmonic effects in IR, Raman, and Raman optical activity spectra of alanine and proline zwitterions.
    Danecek P; Kapitán J; Baumruk V; Bednárová L; Kopecký V; Bour P
    J Chem Phys; 2007 Jun; 126(22):224513. PubMed ID: 17581069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A charge-transfer surface enhanced Raman scattering model from time-dependent density functional theory calculations on a Ag10-pyridine complex.
    Birke RL; Znamenskiy V; Lombardi JR
    J Chem Phys; 2010 Jun; 132(21):214707. PubMed ID: 20528041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resonance hyper-Raman spectra of zinc phthalocyanine.
    Leng W; Myers Kelley A
    J Phys Chem A; 2008 Jul; 112(26):5925-9. PubMed ID: 18537230
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simplified Sum-Over-States Approach for Predicting Resonance Raman Spectra. Application to Nucleic Acid Bases.
    Rappoport D; Shim S; Aspuru-Guzik A
    J Phys Chem Lett; 2011 Jun; 2(11):1254-60. PubMed ID: 26295418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular vibrations of [n]oligoacenes (n=2-5 and 10) and phonon dispersion relations of polyacene.
    Yamakita Y; Kimura J; Ohno K
    J Chem Phys; 2007 Feb; 126(6):064904. PubMed ID: 17313241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.