BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 24880304)

  • 1. Ionic asymmetry and solvent excluded volume effects on spherical electric double layers: a density functional approach.
    Medasani B; Ovanesyan Z; Thomas DG; Sushko ML; Marucho M
    J Chem Phys; 2014 May; 140(20):204510. PubMed ID: 24880304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular solvent model of spherical electric double layers: a systematic study by Monte Carlo simulations and density functional theory.
    Patra CN
    J Phys Chem B; 2009 Oct; 113(42):13980-7. PubMed ID: 19778069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three component model of cylindrical electric double layers containing mixed electrolytes: A systematic study by Monte Carlo simulations and density functional theory.
    Goel T; Patra CN; Ghosh SK; Mukherjee T
    J Chem Phys; 2010 May; 132(19):194706. PubMed ID: 20499983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Excluded volume and ion-ion correlation effects on the ionic atmosphere around B-DNA: theory, simulations, and experiments.
    Ovanesyan Z; Medasani B; Fenley MO; Guerrero-García GI; de la Cruz MO; Marucho M
    J Chem Phys; 2014 Dec; 141(22):225103. PubMed ID: 25494770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of spherical electric double layers with fully asymmetric electrolytes: a systematic study by Monte Carlo simulations and density functional theory.
    Patra CN
    J Chem Phys; 2014 Nov; 141(18):184702. PubMed ID: 25399154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of ionic size on the structure of cylindrical electric double layers: a systematic study by Monte Carlo simulations and density functional theory.
    Goel T; Patra CN; Ghosh SK; Mukherjee T
    J Phys Chem B; 2011 Sep; 115(37):10903-10. PubMed ID: 21827170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of spherical electric double layers containing mixed electrolytes: a systematic study by Monte Carlo simulations and density functional theory.
    Patra CN
    J Phys Chem B; 2010 Aug; 114(32):10550-7. PubMed ID: 20701385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular solvent model of cylindrical electric double layers: a systematic study by Monte Carlo simulations and density functional theory.
    Goel T; Patra CN; Ghosh SK; Mukherjee T
    J Chem Phys; 2008 Oct; 129(15):154707. PubMed ID: 19045218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ion-ion correlation, solvent excluded volume and pH effects on physicochemical properties of spherical oxide nanoparticles.
    Ovanesyan Z; Aljzmi A; Almusaynid M; Khan A; Valderrama E; Nash KL; Marucho M
    J Colloid Interface Sci; 2016 Jan; 462():325-33. PubMed ID: 26476201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical description of the electrical double layer for a mixture of n ionic species with arbitrary size and charge asymmetries. I. Spherical geometry.
    Elisea-Espinoza JJ; González-Tovar E; Guerrero-García GI
    J Chem Phys; 2023 Jun; 158(22):. PubMed ID: 37294907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Density-functional theory and Monte Carlo simulation study on the electric double layer around DNA in mixed-size counterion systems.
    Wang K; Yu YX; Gao GH; Luo GS
    J Chem Phys; 2005 Dec; 123(23):234904. PubMed ID: 16392946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Size and charge correlations in spherical electric double layers: a case study with fully asymmetric mixed electrolytes within the solvent primitive model.
    Patra CN
    RSC Adv; 2020 Oct; 10(64):39017-39025. PubMed ID: 35518397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Density-functional theory of spherical electric double layers and zeta potentials of colloidal particles in restricted-primitive-model electrolyte solutions.
    Yu YX; Wu J; Gao GH
    J Chem Phys; 2004 Apr; 120(15):7223-33. PubMed ID: 15267630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrostatic correlations in inhomogeneous charged fluids beyond loop expansion.
    Buyukdagli S; Achim CV; Ala-Nissila T
    J Chem Phys; 2012 Sep; 137(10):104902. PubMed ID: 22979885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Revisiting the Charged Shell Model: A Density Functional Theory for Electrolytes.
    Jiang J; Gillespie D
    J Chem Theory Comput; 2021 Apr; 17(4):2409-2416. PubMed ID: 33783216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of colloidal solution in presence of mixed electrolytes: a solvent restricted primitive model study.
    Modak B; Patra CN; Ghosh SK; Das P
    J Phys Chem B; 2011 Oct; 115(42):12126-34. PubMed ID: 21919495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing the accuracy of three classical density functional theories of the electrical double layer.
    Voukadinova A; Valiskó M; Gillespie D
    Phys Rev E; 2018 Jul; 98(1-1):012116. PubMed ID: 30110825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-consistent field model for strong electrostatic correlations and inhomogeneous dielectric media.
    Ma M; Xu Z
    J Chem Phys; 2014 Dec; 141(24):244903. PubMed ID: 25554176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical study of density functional theory with mean spherical approximation for ionic condensation in highly charged confined electrolytes.
    Joubaud R; Bernard O; Delville A; Ern A; Rotenberg B; Turq P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062302. PubMed ID: 25019771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of spherical electric double layers: a density functional approach.
    Goel T; Patra CN
    J Chem Phys; 2007 Jul; 127(3):034502. PubMed ID: 17655443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.