These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 24880395)

  • 1. Investigation and optimization of low-frequency noise performance in readout electronics of dc superconducting quantum interference device.
    Zhao J; Zhang Y; Lee YH; Krause HJ
    Rev Sci Instrum; 2014 May; 85(5):054707. PubMed ID: 24880395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superconducting quantum interference device readout circuit with tunable feedback polarity.
    Wu X; Liu J; Chen W
    Rev Sci Instrum; 2023 Sep; 94(9):. PubMed ID: 37768134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An ultralow noise current amplifier based on superconducting quantum interference device for high sensitivity applications.
    Granata C; Vettoliere A; Russo M
    Rev Sci Instrum; 2011 Jan; 82(1):013901. PubMed ID: 21280839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-noise nano superconducting quantum interference device operating in Tesla magnetic fields.
    Schwarz T; Nagel J; Wölbing R; Kemmler M; Kleiner R; Koelle D
    ACS Nano; 2013 Jan; 7(1):844-50. PubMed ID: 23252846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Linearized superconducting quantum interference device array for high bandwidth frequency-domain readout multiplexing.
    Lanting T; Dobbs M; Spieler H; Lee AT; Yamamoto Y
    Rev Sci Instrum; 2009 Sep; 80(9):094501. PubMed ID: 19791952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An ultralow noise preamplifier for low frequency noise measurements.
    Cannatà G; Scandurra G; Ciofi C
    Rev Sci Instrum; 2009 Nov; 80(11):114702. PubMed ID: 19947746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superconducting quantum interference devices based set-up for probing current noise and correlations in three-terminal devices.
    Pfeffer AH; Kaviraj B; Coupiac O; Lefloch F
    Rev Sci Instrum; 2012 Nov; 83(11):115107. PubMed ID: 23206098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-noise extended-frequency response with cooled silicon photodiodes.
    Neiswander RS; Plews GS
    Appl Opt; 1975 Nov; 14(11):2720-6. PubMed ID: 20155092
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SQUID-based current sensing noise thermometry for quantum resistors at dilution refrigerator temperatures.
    Kleinbaum E; Shingla V; Csáthy GA
    Rev Sci Instrum; 2017 Mar; 88(3):034902. PubMed ID: 28372392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Noise thermometry at ultra-low temperatures.
    Rothfuss D; Reiser A; Fleischmann A; Enss C
    Philos Trans A Math Phys Eng Sci; 2016 Mar; 374(2064):20150051. PubMed ID: 26903101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An integrated superconductive magnetic nanosensor for high-sensitivity nanoscale applications.
    Granata C; Esposito E; Vettoliere A; Petti L; Russo M
    Nanotechnology; 2008 Jul; 19(27):275501. PubMed ID: 21828707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cryogenic ultra-low-noise SiGe transistor amplifier.
    Ivanov BI; Trgala M; Grajcar M; Il'ichev E; Meyer HG
    Rev Sci Instrum; 2011 Oct; 82(10):104705. PubMed ID: 22047315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A three-axis SQUID-based absolute vector magnetometer.
    Schönau T; Zakosarenko V; Schmelz M; Stolz R; Anders S; Linzen S; Meyer M; Meyer HG
    Rev Sci Instrum; 2015 Oct; 86(10):105002. PubMed ID: 26520976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A High-Performance Nb Nano-Superconducting Quantum Interference Device with a Three-Dimensional Structure.
    Chen L; Wang H; Liu X; Wu L; Wang Z
    Nano Lett; 2016 Dec; 16(12):7726-7730. PubMed ID: 27960520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetic flux noise in dc SQUIDs: temperature and geometry dependence.
    Anton SM; Birenbaum JS; O'Kelley SR; Bolkhovsky V; Braje DA; Fitch G; Neeley M; Hilton GC; Cho HM; Irwin KD; Wellstood FC; Oliver WD; Shnirman A; Clarke J
    Phys Rev Lett; 2013 Apr; 110(14):147002. PubMed ID: 25167026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A low-noise large dynamic-range readout suitable for laser spectroscopy with photodiodes.
    Pullia A; Sanvito T; Potenza MA; Zocca F
    Rev Sci Instrum; 2012 Oct; 83(10):104704. PubMed ID: 23126787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cryogenic receive coil and low noise preamplifier for MRI at 0.01T.
    Resmer F; Seton HC; Hutchison JM
    J Magn Reson; 2010 Mar; 203(1):57-65. PubMed ID: 20031458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of Resonances on the Noise Performance of SQUID Susceptometers.
    Davis SI; Kirtley JR; Moler KA
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31905901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Digital-to-analog converter using a superconducting quantum interference device.
    Nakanishi M
    Rev Sci Instrum; 2012 Nov; 83(11):114701. PubMed ID: 23206079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fine-Tuning and Optimization of Superconducting Quantum Magnetic Sensors by Thermal Annealing.
    Vettoliere A; Ruggiero B; Valentino M; Silvestrini P; Granata C
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31438525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.