These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 24880418)

  • 1. High velocity flyer plates launched by magnetic pressure on pulsed power generator CQ-4 and applied in shock Hugoniot experiments.
    Zhang X; Wang G; Zhao J; Tan F; Luo B; Sun C
    Rev Sci Instrum; 2014 May; 85(5):055110. PubMed ID: 24880418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A 4 MA, 500 ns pulsed power generator CQ-4 for characterization of material behaviors under ramp wave loading.
    Wang G; Luo B; Zhang X; Zhao J; Sun C; Tan F; Chong T; Mo J; Wu G; Tao Y
    Rev Sci Instrum; 2013 Jan; 84(1):015117. PubMed ID: 23387705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The techniques of metallic foil electrically exploding driving hypervelocity flyer to more than 10 km/s for shock wave physics experiments.
    Wang G; He J; Zhao J; Tan F; Sun C; Mo J; Xong X; Wu G
    Rev Sci Instrum; 2011 Sep; 82(9):095105. PubMed ID: 21974617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The compact capacitor bank CQ-1.5 employed in magnetically driven isentropic compression and high velocity flyer plate experiments.
    Wang G; Sun C; Tan F; Zhao J; Zhang N; Liu C; Mo J; Wang G; Wang X
    Rev Sci Instrum; 2008 May; 79(5):053904. PubMed ID: 18513076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fiber-coupled laser-driven flyer plates system.
    Zhao XH; Zhao X; Shan GC; Gao Y
    Rev Sci Instrum; 2011 Apr; 82(4):043904. PubMed ID: 21529022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A high current pulsed power generator CQ-3-MMAF with co-axial cable transmitting energy for material dynamics experiments.
    Wang G; Chen X; Cai J; Zhang X; Chong T; Luo B; Zhao J; Sun C; Tan F; Liu C; Wu G
    Rev Sci Instrum; 2016 Jun; 87(6):065110. PubMed ID: 27370784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasma-accelerated flyer-plates for equation of state studies.
    Fratanduono DE; Smith RF; Boehly TR; Eggert JH; Braun DG; Collins GW
    Rev Sci Instrum; 2012 Jul; 83(7):073504. PubMed ID: 22852692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A compact pulsed power driver with precisely shaped current waveforms for magnetically driven loading experiments.
    Chen X; Luo B; Zhang X; Wang G; Tan F; Shui R; Xu C; Wu G; Ma X; Zhao J; Liu C; Sun C; Zhang L
    Rev Sci Instrum; 2022 Aug; 93(8):083910. PubMed ID: 36050077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a three-stage gas gun launcher for ultrahigh-pressure Hugoniot measurements.
    Wang X; Dai C; Wang Q; Hao L; Bai J; Yu Y; Wu Q; Tan H; Hu J; Luo G; Shen Q; Zhang L
    Rev Sci Instrum; 2019 Jan; 90(1):013903. PubMed ID: 30709225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simplified laser-driven flyer plates for shock compression science.
    Brown KE; Shaw WL; Zheng X; Dlott DD
    Rev Sci Instrum; 2012 Oct; 83(10):103901. PubMed ID: 23126776
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laser-launched flyer plate and confined laser ablation for shock wave loading: validation and applications.
    Paisley DL; Luo SN; Greenfield SR; Koskelo AC
    Rev Sci Instrum; 2008 Feb; 79(2 Pt 1):023902. PubMed ID: 18315311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Point projection radiography of electromagnetically accelerated flyer plates with an external X-pinch driver.
    Read J; Burdiak G; Bland SN; Caballero Bendixsen LS; Paxton-Fear L; Niasse N; Dobranszki C; Hawker N
    Rev Sci Instrum; 2024 Feb; 95(2):. PubMed ID: 38421258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-energy flat-top beams for laser launching using a Gaussian mirror.
    Fujiwara H; Brown KE; Dlott DD
    Appl Opt; 2010 Jul; 49(19):3723-31. PubMed ID: 20648138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Indirect ignition of energetic materials with laser-driven flyer plates.
    Dean SW; De Lucia FC; Gottfried JL
    Appl Opt; 2017 Jan; 56(3):B134-B141. PubMed ID: 28157876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Note: Accuracy of velocity correction for impact of a laser-accelerated miniature flyer with lithium fluoride shock-compressed along the [100] axis.
    Wakabayashi K; Matsumura T; Nakayama Y; Koshi M
    Rev Sci Instrum; 2011 Feb; 82(2):026112. PubMed ID: 21361651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shock experiments and numerical simulations on low energy portable electrically exploding foil accelerators.
    Saxena AK; Kaushik TC; Gupta SC
    Rev Sci Instrum; 2010 Mar; 81(3):033508. PubMed ID: 20370178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laser-driven flyer plates for shock compression science: launch and target impact probed by photon Doppler velocimetry.
    Curtis AD; Banishev AA; Shaw WL; Dlott DD
    Rev Sci Instrum; 2014 Apr; 85(4):043908. PubMed ID: 24784627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ADL ORVIS: an air-delay-leg, line-imaging optically recording velocity interferometer system.
    Trott WM; CastaƱeda JN; Cooper MA
    Rev Sci Instrum; 2014 Apr; 85(4):045118. PubMed ID: 24784670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A pulse-shaping technique to investigate the behaviour of brittle materials subjected to plate-impact tests.
    Forquin P; Zinszner JL
    Philos Trans A Math Phys Eng Sci; 2017 Jan; 375(2085):. PubMed ID: 27956516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of a Microflyer Driven by a Microsized Charge Combined with an Initiation Criterion.
    He X; Yang L; Dong H; Lv Z; Yan N
    Micromachines (Basel); 2023 Jan; 14(2):. PubMed ID: 36838012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.