These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 24880775)

  • 1. Multifunctional exopolysaccharides from Pseudomonas aeruginosa PF23 involved in plant growth stimulation, biocontrol and stress amelioration in sunflower under saline conditions.
    Tewari S; Arora NK
    Curr Microbiol; 2014 Oct; 69(4):484-94. PubMed ID: 24880775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pseudomonas entomophila PE3 and its exopolysaccharides as biostimulants for enhancing growth, yield and tolerance responses of sunflower under saline conditions.
    Fatima T; Arora NK
    Microbiol Res; 2021 Mar; 244():126671. PubMed ID: 33360750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suppression of charcoal rot of chickpea by fluorescent Pseudomonas under saline stress condition.
    Khare E; Singh S; Maheshwari DK; Arora NK
    Curr Microbiol; 2011 May; 62(5):1548-53. PubMed ID: 21331555
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of indole-3-acetic acid (IAA) produced by Pseudomonas aeruginosa in suppression of charcoal rot disease of chickpea.
    Khare E; Arora NK
    Curr Microbiol; 2010 Jul; 61(1):64-8. PubMed ID: 20049597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suppression of charcoal rot in soybean by moderately halotolerant Pseudomonas aeruginosa GS-33 under saline conditions.
    Patil S; Paradeshi J; Chaudhari B
    J Basic Microbiol; 2016 Aug; 56(8):889-99. PubMed ID: 27213894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosurfactant based formulation of Pseudomonas guariconensis LE3 with multifarious plant growth promoting traits controls charcoal rot disease in Helianthus annus.
    Khare E; Arora NK
    World J Microbiol Biotechnol; 2021 Feb; 37(4):55. PubMed ID: 33615389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Talc based exopolysaccharides formulation enhancing growth and production of Hellianthus annuus under saline conditions.
    Tewari S; Arora K
    Cell Mol Biol (Noisy-le-grand); 2014 Dec; 60(5):73-81. PubMed ID: 25535716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Beneficial effects of fluorescent pseudomonads on seed germination, growth promotion, and suppression of charcoal rot in groundnut (Arachis hypogea L.).
    Shweta B; Maheshwari DK; Dubey RC; Arora DS; Bajpai VK; Kang SC
    J Microbiol Biotechnol; 2008 Sep; 18(9):1578-83. PubMed ID: 18852515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of Pseudomonas aeruginosa RM-3 as a potential biocontrol agent.
    Minaxi ; Saxena J
    Mycopathologia; 2010 Sep; 170(3):181-93. PubMed ID: 20446042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antagonistic potential of fluorescent pseudomonads and control of charcoal rot of chickpea caused by Macrophomina phaseolina.
    Kumar V; Kumar A; Kharwar RN
    J Environ Biol; 2007 Jan; 28(1):15-20. PubMed ID: 17717979
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rhizosphere soil aggregation and plant growth promotion of sunflowers by an exopolysaccharide-producing Rhizobium sp. strain isolated from sunflower roots.
    Alami Y; Achouak W; Marol C; Heulin T
    Appl Environ Microbiol; 2000 Aug; 66(8):3393-8. PubMed ID: 10919797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facets of rhizospheric microflora in biocontrol of phytopathogen Macrophomina phaseolina in oil crop soybean.
    Dave K; Gothalwal R; Singh M; Joshi N
    Arch Microbiol; 2021 Mar; 203(2):405-412. PubMed ID: 32965527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exopolysaccharides producing rhizobacteria and their role in plant growth and drought tolerance.
    Naseem H; Ahsan M; Shahid MA; Khan N
    J Basic Microbiol; 2018 Dec; 58(12):1009-1022. PubMed ID: 30183106
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of mineral and carbon sources on biological control of charcoal rot fungus, Macrophomina phaseolina by fluorescent pseudomonads in tomato.
    Shaukat SS; Siddiqui IA
    Lett Appl Microbiol; 2003; 36(6):392-8. PubMed ID: 12753248
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparative analysis of exopolysaccharide and phytohormone secretions by four drought-tolerant rhizobacterial strains and their impact on osmotic-stress mitigation in Arabidopsis thaliana.
    Ghosh D; Gupta A; Mohapatra S
    World J Microbiol Biotechnol; 2019 May; 35(6):90. PubMed ID: 31147784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Screening and histopathological characterization of sunflower germplasm for resistance to
    Siddique S; Shoaib A; Khan SN; Mohy-Ud-Din A
    Mycologia; 2021; 113(1):92-107. PubMed ID: 33085943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome Mining and Evaluation of the Biocontrol Potential of
    Chlebek D; Pinski A; Żur J; Michalska J; Hupert-Kocurek K
    Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33228091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of native bacteria and manganese phosphite for alternative control of charcoal root rot of soybean.
    Simonetti E; Viso NP; Montecchia M; Zilli C; Balestrasse K; Carmona M
    Microbiol Res; 2015 Nov; 180():40-8. PubMed ID: 26505310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual activity of pyocyanin from Pseudomonas aeruginosa--antibiotic against phytopathogen and signal molecule for biofilm development by rhizobia.
    Khare E; Arora NK
    Can J Microbiol; 2011 Sep; 57(9):708-13. PubMed ID: 21851321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel Genes and Regulators That Influence Production of Cell Surface Exopolysaccharides in Sinorhizobium meliloti.
    Barnett MJ; Long SR
    J Bacteriol; 2018 Feb; 200(3):. PubMed ID: 29158240
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.