These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 24880784)
1. Biodynamic modelling of the bioaccumulation of trace metals (Ag, As and Zn) by an infaunal estuarine invertebrate, the clam Scrobicularia plana. Kalman J; Smith BD; Bury NR; Rainbow PS Aquat Toxicol; 2014 Sep; 154():121-30. PubMed ID: 24880784 [TBL] [Abstract][Full Text] [Related]
2. Pathways of trace metal uptake in the lugworm Arenicola marina. Casado-Martinez MC; Smith BD; Delvalls TA; Rainbow PS Aquat Toxicol; 2009 Apr; 92(1):9-17. PubMed ID: 19181398 [TBL] [Abstract][Full Text] [Related]
3. Have the bioavailabilities of trace metals to a suite of biomonitors changed over three decades in SW England estuaries historically affected by mining? Rainbow PS; Kriefman S; Smith BD; Luoma SN Sci Total Environ; 2011 Mar; 409(8):1589-602. PubMed ID: 21315427 [TBL] [Abstract][Full Text] [Related]
4. Toxicity and the fractional distribution of trace metals accumulated from contaminated sediments by the clam Scrobicularia plana exposed in the laboratory and the field. Kalman J; Bonnail-Miguel E; Smith BD; Bury NR; Rainbow PS Sci Total Environ; 2015 Feb; 506-507():109-17. PubMed ID: 25460945 [TBL] [Abstract][Full Text] [Related]
5. Biodynamic modelling and the prediction of accumulated trace metal concentrations in the polychaete Arenicola marina. Casado-Martinez MC; Smith BD; DelValls TA; Luoma SN; Rainbow PS Environ Pollut; 2009 Oct; 157(10):2743-50. PubMed ID: 19482397 [TBL] [Abstract][Full Text] [Related]
6. Biodynamic modelling of the accumulation of Ag, Cd and Zn by the deposit-feeding polychaete Nereis diversicolor: inter-population variability and a generalised predictive model. Kalman J; Smith BD; Riba I; Blasco J; Rainbow PS Mar Environ Res; 2010 Jun; 69(5):363-73. PubMed ID: 20137808 [TBL] [Abstract][Full Text] [Related]
7. Bioaccumulation of arsenic from water and sediment by a deposit-feeding polychaete (Arenicola marina): a biodynamic modelling approach. Casado-Martinez MC; Smith BD; Luoma SN; Rainbow PS Aquat Toxicol; 2010 Jun; 98(1):34-43. PubMed ID: 20149466 [TBL] [Abstract][Full Text] [Related]
8. Geochemical survey and metal bioaccumulation of three bivalve species (Crassostrea gigas, Cerastoderma edule and Ruditapes philippinarum) in the Nord Medoc salt marshes (Gironde estuary, France). Baudrimont M; Schäfer J; Marie V; Maury-Brachet R; Bossy C; Boudou A; Blanc G Sci Total Environ; 2005 Jan; 337(1-3):265-80. PubMed ID: 15626396 [TBL] [Abstract][Full Text] [Related]
9. Uptake of dissolved Ag, Cd, and Co by the clam, Macoma balthica: relative importance of overlying water, oxic pore water, and burrow water. Griscom SB; Fisher NS Environ Sci Technol; 2002 Jun; 36(11):2471-8. PubMed ID: 12075807 [TBL] [Abstract][Full Text] [Related]
10. High contribution of the particulate uptake pathway to metal bioaccumulation in the tropical marine clam Gafrarium pectinatum. Hédouin L; Metian M; Teyssié JL; Fichez R; Warnau M Environ Sci Pollut Res Int; 2018 Apr; 25(12):11206-11218. PubMed ID: 28281054 [TBL] [Abstract][Full Text] [Related]
11. Bioavailability, accumulation and effects of heavy metals in sediments with special reference to United Kingdom estuaries: a review. Bryan GW; Langston WJ Environ Pollut; 1992; 76(2):89-131. PubMed ID: 15091993 [TBL] [Abstract][Full Text] [Related]
12. Dietary ingestion of fine sediments and microalgae represent the dominant route of exposure and metal accumulation for Sydney rock oyster (Saccostrea glomerata): A biokinetic model for zinc. Lee JH; Birch GF; Cresswell T; Johansen MP; Adams MS; Simpson SL Aquat Toxicol; 2015 Oct; 167():46-54. PubMed ID: 26261879 [TBL] [Abstract][Full Text] [Related]
13. Modeling metal bioaccumulation in a deposit-feeding polychaete from labile sediment fractions and from pore water. Baumann Z; Fisher NS Sci Total Environ; 2011 Jun; 409(13):2607-15. PubMed ID: 21481438 [TBL] [Abstract][Full Text] [Related]
14. Trace Metals Bioavailability Approach in Intertidal Estuarine Sediments and Bioaccumulation in Associated Nereidid Polychaetes. Castiglioni D; Rezende CE; Muniz P; Muir AI; García-Alonso J Bull Environ Contam Toxicol; 2018 Apr; 100(4):472-476. PubMed ID: 29487956 [TBL] [Abstract][Full Text] [Related]
15. Modification of trace metal accumulation in the green mussel Perna viridis by exposure to Ag, Cu, and Zn. Shi D; Wang WX Environ Pollut; 2004 Nov; 132(2):265-77. PubMed ID: 15312939 [TBL] [Abstract][Full Text] [Related]
16. Relative importance of burrow sediment and porewater to the accumulation of trace metals in the clam Amiantis umbonella. Tarique Q; Burger J; Reinfelder JR Arch Environ Contam Toxicol; 2013 Jul; 65(1):89-97. PubMed ID: 23392587 [TBL] [Abstract][Full Text] [Related]
17. Bioaccumulation of Cd, Se, and Zn in an estuarine oyster (Crassostrea rivularis) and a coastal oyster (Saccostrea glomerata). Ke C; Wang WX Aquat Toxicol; 2001 Dec; 56(1):33-51. PubMed ID: 11690629 [TBL] [Abstract][Full Text] [Related]
18. Seasonal variation of metals in seawater, sediment, and Manila clam Ruditapes philippinarum from China. Zhao L; Yang F; Wang Y; Huo Z; Yan X Biol Trace Elem Res; 2013 Jun; 152(3):358-66. PubMed ID: 23412810 [TBL] [Abstract][Full Text] [Related]
19. Fate of isotopically labeled zinc oxide nanoparticles in sediment and effects on two endobenthic species, the clam Scrobicularia plana and the ragworm Hediste diversicolor. Buffet PE; Amiard-Triquet C; Dybowska A; Risso-de Faverney C; Guibbolini M; Valsami-Jones E; Mouneyrac C Ecotoxicol Environ Saf; 2012 Oct; 84():191-8. PubMed ID: 22858103 [TBL] [Abstract][Full Text] [Related]
20. Bioaccumulation of arsenic and silver by the caddisfly larvae Hydropsyche siltalai and H. pellucidula: a biodynamic modeling approach. Awrahman ZA; Rainbow PS; Smith BD; Khan FR; Bury NR; Fialkowski W Aquat Toxicol; 2015 Apr; 161():196-207. PubMed ID: 25710448 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]