These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
347 related articles for article (PubMed ID: 24880904)
1. Vitreopapillary traction in eyes with idiopathic epiretinal membrane: a spectral-domain optical coherence tomography study. Kim YW; Jeoung JW; Yu HG Ophthalmology; 2014 Oct; 121(10):1976-82. PubMed ID: 24880904 [TBL] [Abstract][Full Text] [Related]
2. Influence of epiretinal membrane on the measurement of peripapillary retinal nerve fibre layer thickness using spectral-domain coherence tomography. Lee YH; Bae HW; Seo SJ; Lee SY; Beon SH; Kang S; Kim CY Br J Ophthalmol; 2016 Aug; 100(8):1035-40. PubMed ID: 26541433 [TBL] [Abstract][Full Text] [Related]
4. Optic nerve head, retinal nerve fiber layer, and macular thickness measurements in young patients with retinitis pigmentosa. Hwang YH; Kim SW; Kim YY; Na JH; Kim HK; Sohn YH Curr Eye Res; 2012 Oct; 37(10):914-20. PubMed ID: 22738608 [TBL] [Abstract][Full Text] [Related]
5. Three-dimensional evaluation of vitreomacular traction and epiretinal membrane using spectral-domain optical coherence tomography. Koizumi H; Spaide RF; Fisher YL; Freund KB; Klancnik JM; Yannuzzi LA Am J Ophthalmol; 2008 Mar; 145(3):509-517. PubMed ID: 18191099 [TBL] [Abstract][Full Text] [Related]
6. Peripapillary RNFL Thickness Changes Evaluated with Spectral Domain Optical Coherence Tomography after Uncomplicated Macular Surgery for Epiretinal Membrane. Gharbiya M; La Cava M; Tortorella P; Abbouda A; Marchiori J; D'Ambrosio E; Jacobbi M; Miranti F; Ventre L Semin Ophthalmol; 2017; 32(4):449-455. PubMed ID: 27077476 [TBL] [Abstract][Full Text] [Related]
7. Comparison of optic nerve head topography and visual field in eyes with open-angle and angle-closure glaucoma. Boland MV; Zhang L; Broman AT; Jampel HD; Quigley HA Ophthalmology; 2008 Feb; 115(2):239-245.e2. PubMed ID: 18082888 [TBL] [Abstract][Full Text] [Related]
8. Spectral-Domain Optical Coherence Tomography of the Vitreopapillary Interface in Acute Nonarteritic Anterior Ischemic Optic Neuropathy. Thompson AC; Bhatti MT; Gospe SM Am J Ophthalmol; 2018 Nov; 195():199-208. PubMed ID: 30098345 [TBL] [Abstract][Full Text] [Related]
9. Spectral-domain optical coherence tomography evaluation of vitreoretinal adhesions in idiopathic epiretinal membranes. Pierro L; Gagliardi M; Giatsidis S; Iuliano L; Berchicci L; Battaglia Parodi M Graefes Arch Clin Exp Ophthalmol; 2014 Jul; 252(7):1041-7. PubMed ID: 24384800 [TBL] [Abstract][Full Text] [Related]
10. Comparison of optic nerve head topography and retinal nerve fiber layer in eyes with narrow angles versus eyes from a normal open angle cohort - a pilot study. Chen YC; Huang G; Kasuga T; Porco T; Hung PT; Lee R; Lin SC Curr Eye Res; 2012 Jul; 37(7):592-8. PubMed ID: 22559281 [TBL] [Abstract][Full Text] [Related]
11. Morphometric analysis of epiretinal membranes using SD-OCT. Gao Y; Smiddy WE Ophthalmic Surg Lasers Imaging; 2012; 43(6 Suppl):S7-15. PubMed ID: 22869382 [TBL] [Abstract][Full Text] [Related]
12. Detection of glaucomatous progression by spectral-domain optical coherence tomography. Na JH; Sung KR; Lee JR; Lee KS; Baek S; Kim HK; Sohn YH Ophthalmology; 2013 Jul; 120(7):1388-95. PubMed ID: 23474248 [TBL] [Abstract][Full Text] [Related]
13. Retinal nerve fiber layer configuration in eyes with epiretinal membrane. Oh J; Oh JH; Do JR; Chang M; Park CY Optom Vis Sci; 2014 Nov; 91(11):1328-34. PubMed ID: 25237764 [TBL] [Abstract][Full Text] [Related]
14. Structure-function relationships with spectral-domain optical coherence tomography retinal nerve fiber layer and optic nerve head measurements. Pollet-Villard F; Chiquet C; Romanet JP; Noel C; Aptel F Invest Ophthalmol Vis Sci; 2014 May; 55(5):2953-62. PubMed ID: 24692125 [TBL] [Abstract][Full Text] [Related]
15. Comparing glaucomatous optic neuropathy in primary open angle and chronic primary angle closure glaucoma eyes by optical coherence tomography. Sihota R; Sony P; Gupta V; Dada T; Singh R Ophthalmic Physiol Opt; 2005 Sep; 25(5):408-15. PubMed ID: 16101946 [TBL] [Abstract][Full Text] [Related]
16. High-resolution imaging of the photoreceptor layer in epiretinal membrane using adaptive optics scanning laser ophthalmoscopy. Ooto S; Hangai M; Takayama K; Sakamoto A; Tsujikawa A; Oshima S; Inoue T; Yoshimura N Ophthalmology; 2011 May; 118(5):873-81. PubMed ID: 21074858 [TBL] [Abstract][Full Text] [Related]
17. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography a study on diagnostic agreement with Heidelberg Retinal Tomograph. Leung CK; Ye C; Weinreb RN; Cheung CY; Qiu Q; Liu S; Xu G; Lam DS Ophthalmology; 2010 Feb; 117(2):267-74. PubMed ID: 19969364 [TBL] [Abstract][Full Text] [Related]
18. Progression detection capability of macular thickness in advanced glaucomatous eyes. Sung KR; Sun JH; Na JH; Lee JY; Lee Y Ophthalmology; 2012 Feb; 119(2):308-13. PubMed ID: 22182800 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of macular thickness measurements for detection of band atrophy of the optic nerve using optical coherence tomography. Moura FC; Medeiros FA; Monteiro ML Ophthalmology; 2007 Jan; 114(1):175-81. PubMed ID: 17070583 [TBL] [Abstract][Full Text] [Related]
20. Humphrey matrix frequency doubling technology perimetry and optical coherence tomography measurement of the retinal nerve fiber layer thickness in both normal and ocular hypertensive subjects. Mastropasqua L; Brusini P; Carpineto P; Ciancaglini M; Di Antonio L; Zeppieri MW; Parisi L J Glaucoma; 2006 Aug; 15(4):328-35. PubMed ID: 16865011 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]