These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 24881044)

  • 21. Invited review: molecular adaptations in mammalian hibernators: unique adaptations or generalized responses?
    Van Breukelen F; Martin SL
    J Appl Physiol (1985); 2002 Jun; 92(6):2640-7. PubMed ID: 12015384
    [TBL] [Abstract][Full Text] [Related]  

  • 22. New Genes and Functional Innovation in Mammals.
    Villanueva-Cañas JL; Ruiz-Orera J; Agea MI; Gallo M; Andreu D; Albà MM
    Genome Biol Evol; 2017 Jul; 9(7):1886-1900. PubMed ID: 28854603
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A compendium and functional characterization of mammalian genes involved in adaptation to Arctic or Antarctic environments.
    Yudin NS; Larkin DM; Ignatieva EV
    BMC Genet; 2017 Dec; 18(Suppl 1):111. PubMed ID: 29297313
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A functional transcriptomic analysis in the relict marsupial Dromiciops gliroides reveals adaptive regulation of protective functions during hibernation.
    Nespolo RF; Gaitan-Espitia JD; Quintero-Galvis JF; Fernandez FV; Silva AX; Molina C; Storey KB; Bozinovic F
    Mol Ecol; 2018 Nov; 27(22):4489-4500. PubMed ID: 30240506
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Seasonal changes in brown adipose tissue mitochondria in a mammalian hibernator: from gene expression to function.
    Ballinger MA; Hess C; Napolitano MW; Bjork JA; Andrews MT
    Am J Physiol Regul Integr Comp Physiol; 2016 Aug; 311(2):R325-36. PubMed ID: 27225952
    [TBL] [Abstract][Full Text] [Related]  

  • 26. ERC analysis: web-based inference of gene function via evolutionary rate covariation.
    Wolfe NW; Clark NL
    Bioinformatics; 2015 Dec; 31(23):3835-7. PubMed ID: 26243019
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analysis of microRNA expression during the torpor-arousal cycle of a mammalian hibernator, the 13-lined ground squirrel.
    Wu CW; Biggar KK; Luu BE; Szereszewski KE; Storey KB
    Physiol Genomics; 2016 Jun; 48(6):388-96. PubMed ID: 27084747
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature.
    Carey HV; Andrews MT; Martin SL
    Physiol Rev; 2003 Oct; 83(4):1153-81. PubMed ID: 14506303
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Coordinate expression of the PDK4 gene: a means of regulating fuel selection in a hibernating mammal.
    Buck MJ; Squire TL; Andrews MT
    Physiol Genomics; 2002 Feb; 8(1):5-13. PubMed ID: 11842126
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hibernation constrains brain size evolution in mammals.
    Heldstab SA; Isler K; van Schaik CP
    J Evol Biol; 2018 Oct; 31(10):1582-1588. PubMed ID: 30030877
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Seasonal changes in the expression of energy metabolism-related genes in white adipose tissue and skeletal muscle in female Japanese black bears.
    Shimozuru M; Nagashima A; Tanaka J; Tsubota T
    Comp Biochem Physiol B Biochem Mol Biol; 2016; 196-197():38-47. PubMed ID: 26880364
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Integrated transcriptomic and metabolomic analysis reveals adaptive changes of hibernating retinas.
    Luan Y; Ou J; Kunze VP; Qiao F; Wang Y; Wei L; Li W; Xie Z
    J Cell Physiol; 2018 Feb; 233(2):1434-1445. PubMed ID: 28542832
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Proteomics approaches shed new light on hibernation physiology.
    Grabek KR; Martin SL; Hindle AG
    J Comp Physiol B; 2015 Aug; 185(6):607-27. PubMed ID: 25976608
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Peroxisome proliferator-activated receptors as regulators of lipid metabolism; tissue differential expression in adipose tissues during cold acclimatization and hibernation of jerboa (Jaculus orientalis).
    Kabine M; El Kebbaj Z; Oaxaca-Castillo D; Clémencet MC; El Kebbaj MS; Latruffe N; Cherkaoui-Malki M
    Biochimie; 2004 Nov; 86(11):763-70. PubMed ID: 15589684
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of the SIRT family of NAD+-dependent protein deacetylases in the context of a mammalian model of hibernation, the thirteen-lined ground squirrel.
    Rouble AN; Storey KB
    Cryobiology; 2015 Oct; 71(2):334-43. PubMed ID: 26277038
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Central role for differential gene expression in mammalian hibernation.
    Srere HK; Wang LC; Martin SL
    Proc Natl Acad Sci U S A; 1992 Aug; 89(15):7119-23. PubMed ID: 1379733
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Changes in expression of hepatic genes involved in energy metabolism during hibernation in captive, adult, female Japanese black bears (Ursus thibetanus japonicus).
    Shimozuru M; Kamine A; Tsubota T
    Comp Biochem Physiol B Biochem Mol Biol; 2012 Oct; 163(2):254-61. PubMed ID: 22771378
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterizing Cardiac Molecular Mechanisms of Mammalian Hibernation via Quantitative Proteogenomics.
    Vermillion KL; Jagtap P; Johnson JE; Griffin TJ; Andrews MT
    J Proteome Res; 2015 Nov; 14(11):4792-804. PubMed ID: 26435507
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evolution of daily torpor and hibernation in birds and mammals: importance of body size.
    Geiser F
    Clin Exp Pharmacol Physiol; 1998 Sep; 25(9):736-9. PubMed ID: 9750966
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lipids in mammalian hibernation and artificial hypobiosis.
    Kolomiytseva IK
    Biochemistry (Mosc); 2011 Dec; 76(12):1291-9. PubMed ID: 22150274
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.