These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
749 related articles for article (PubMed ID: 24881520)
1. Responsive polymer-fluorescent carbon nanoparticle hybrid nanogels for optical temperature sensing, near-infrared light-responsive drug release, and tumor cell imaging. Wang H; Ke F; Mararenko A; Wei Z; Banerjee P; Zhou S Nanoscale; 2014 Jul; 6(13):7443-52. PubMed ID: 24881520 [TBL] [Abstract][Full Text] [Related]
2. Magnetic/NIR-thermally responsive hybrid nanogels for optical temperature sensing, tumor cell imaging and triggered drug release. Wang H; Yi J; Mukherjee S; Banerjee P; Zhou S Nanoscale; 2014 Nov; 6(21):13001-11. PubMed ID: 25243783 [TBL] [Abstract][Full Text] [Related]
3. Water-dispersible multifunctional hybrid nanogels for combined curcumin and photothermal therapy. Wu W; Shen J; Banerjee P; Zhou S Biomaterials; 2011 Jan; 32(2):598-609. PubMed ID: 20933280 [TBL] [Abstract][Full Text] [Related]
4. Multi-functional core-shell hybrid nanogels for pH-dependent magnetic manipulation, fluorescent pH-sensing, and drug delivery. Wu W; Shen J; Gai Z; Hong K; Banerjee P; Zhou S Biomaterials; 2011 Dec; 32(36):9876-87. PubMed ID: 21944827 [TBL] [Abstract][Full Text] [Related]
5. Responsive fluorescent Bi(2)O(3)@PVA hybrid nanogels for temperature-sensing, dual-modal imaging, and drug delivery. Zhu H; Li Y; Qiu R; Shi L; Wu W; Zhou S Biomaterials; 2012 Apr; 33(10):3058-69. PubMed ID: 22257723 [TBL] [Abstract][Full Text] [Related]
6. Core-shell hybrid nanogels for integration of optical temperature-sensing, targeted tumor cell imaging, and combined chemo-photothermal treatment. Wu W; Shen J; Banerjee P; Zhou S Biomaterials; 2010 Oct; 31(29):7555-66. PubMed ID: 20643481 [TBL] [Abstract][Full Text] [Related]
7. Critical parameters for the controlled synthesis of nanogels suitable for temperature-triggered protein delivery. Theune LE; Charbaji R; Kar M; Wedepohl S; Hedtrich S; Calderón M Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():141-151. PubMed ID: 30948048 [TBL] [Abstract][Full Text] [Related]
8. Development of a thermally responsive nanogel based on chitosan-poly(N-isopropylacrylamide-co-acrylamide) for paclitaxel delivery. Wang Y; Xu H; Wang J; Ge L; Zhu J J Pharm Sci; 2014 Jul; 103(7):2012-2021. PubMed ID: 24823900 [TBL] [Abstract][Full Text] [Related]
9. Multiwalled carbon nanotubes and NaYF4:Yb3+/Er3+ nanoparticle-doped bilayer hydrogel for concurrent NIR-triggered drug release and up-conversion luminescence tagging. Cheng Z; Chai R; Ma P; Dai Y; Kang X; Lian H; Hou Z; Li C; Lin J Langmuir; 2013 Jul; 29(30):9573-80. PubMed ID: 23829598 [TBL] [Abstract][Full Text] [Related]
10. Embedding fluorescent mesoporous silica nanoparticles into biocompatible nanogels for tumor cell imaging and thermo/pH-sensitive in vitro drug release. Gui R; Wang Y; Sun J Colloids Surf B Biointerfaces; 2014 Apr; 116():518-25. PubMed ID: 24576821 [TBL] [Abstract][Full Text] [Related]
11. Near-infrared light remote-controlled intracellular anti-cancer drug delivery using thermo/pH sensitive nanovehicle. Qin Y; Chen J; Bi Y; Xu X; Zhou H; Gao J; Hu Y; Zhao Y; Chai Z Acta Biomater; 2015 Apr; 17():201-9. PubMed ID: 25644449 [TBL] [Abstract][Full Text] [Related]
12. In-situ immobilization of quantum dots in polysaccharide-based nanogels for integration of optical pH-sensing, tumor cell imaging, and drug delivery. Wu W; Aiello M; Zhou T; Berliner A; Banerjee P; Zhou S Biomaterials; 2010 Apr; 31(11):3023-31. PubMed ID: 20106519 [TBL] [Abstract][Full Text] [Related]
13. A fluorescent responsive hybrid nanogel for closed-loop control of glucose. Wu W; Chen S; Hu Y; Zhou S J Diabetes Sci Technol; 2012 Jul; 6(4):892-901. PubMed ID: 22920816 [TBL] [Abstract][Full Text] [Related]
14. A new multiresponsive drug delivery system using smart nanogels. Demirel GB; von Klitzing R Chemphyschem; 2013 Aug; 14(12):2833-40. PubMed ID: 23794381 [TBL] [Abstract][Full Text] [Related]
15. Chitosan-based polymer hybrids for thermo-responsive nanogel delivery of curcumin. Luckanagul JA; Pitakchatwong C; Ratnatilaka Na Bhuket P; Muangnoi C; Rojsitthisak P; Chirachanchai S; Wang Q; Rojsitthisak P Carbohydr Polym; 2018 Feb; 181():1119-1127. PubMed ID: 29253940 [TBL] [Abstract][Full Text] [Related]
16. Magnetic/NIR-responsive drug carrier, multicolor cell imaging, and enhanced photothermal therapy of gold capped magnetite-fluorescent carbon hybrid nanoparticles. Wang H; Cao G; Gai Z; Hong K; Banerjee P; Zhou S Nanoscale; 2015 May; 7(17):7885-95. PubMed ID: 25854197 [TBL] [Abstract][Full Text] [Related]
17. Synthesis and characterization of novel dual-responsive nanogels and their application as drug delivery systems. Peng J; Qi T; Liao J; Fan M; Luo F; Li H; Qian Z Nanoscale; 2012 Apr; 4(8):2694-704. PubMed ID: 22426443 [TBL] [Abstract][Full Text] [Related]
18. The effects of topically applied polyNIPAM-based nanogels and their monomers on skin cyclooxygenase expression, ex vivo. Abu Samah NH; Heard CM Nanotoxicology; 2014 Feb; 8(1):100-6. PubMed ID: 23194376 [TBL] [Abstract][Full Text] [Related]
19. Controlled release of cisplatin from pH-thermal dual responsive nanogels. Peng J; Qi T; Liao J; Chu B; Yang Q; Li W; Qu Y; Luo F; Qian Z Biomaterials; 2013 Nov; 34(34):8726-40. PubMed ID: 23948167 [TBL] [Abstract][Full Text] [Related]
20. In situ forming reduction-sensitive degradable nanogels for facile loading and triggered intracellular release of proteins. Chen W; Zheng M; Meng F; Cheng R; Deng C; Feijen J; Zhong Z Biomacromolecules; 2013 Apr; 14(4):1214-22. PubMed ID: 23477570 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]