BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 24881661)

  • 1. Properties of precipitate of creaming down by (-)-epigallocatechin-3-O-gallate and caffeine.
    Ishizu T; Tsutsumi H; Kinoshita Y; Mukaida H; Sato T; Kajitani S
    Chem Pharm Bull (Tokyo); 2014; 62(6):552-8. PubMed ID: 24881661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of Creaming Down Based on Chemical Characterization of a Complex of Caffeine and Tea Catechins.
    Ishizu T; Tsutsumi H; Sato T
    Chem Pharm Bull (Tokyo); 2016; 64(7):676-86. PubMed ID: 27373623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular Capture Using the Precipitate of Creaming-Down by (-)-Epigallocatechin-3-O-gallate.
    Tsutsumi H; Sato A; Fujino S; Fujioka Y; Ishizu T
    Chem Pharm Bull (Tokyo); 2019; 67(5):501-504. PubMed ID: 31061378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of creaming precipitate of tea catechins and caffeine in aqueous solution.
    Sato T; Kinoshita Y; Tsutsumi H; Yamamoto H; Ishizu T
    Chem Pharm Bull (Tokyo); 2012; 60(9):1182-7. PubMed ID: 22976328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stereochemical structure and intermolecular interaction of complexes of (-)-Gallocatechin-3-O-gallate and caffeine.
    Tsutsumi H; Sato T; Ishizu T
    Chem Pharm Bull (Tokyo); 2011; 59(1):100-5. PubMed ID: 21212555
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Configurational studies of complexes of tea catechins with caffeine and various cyclodextrins.
    Ishizu T; Kajitani S; Tsutsumi H; Sato T; Yamamoto H; Hirata C
    Planta Med; 2011 Jul; 77(11):1099-109. PubMed ID: 21472646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Configurational studies of complexes of various tea catechins and caffeine in crystal state.
    Tsutsumi H; Kinoshita Y; Sato T; Ishizu T
    Chem Pharm Bull (Tokyo); 2011; 59(8):1008-15. PubMed ID: 21804246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Offset pi-pi interaction in crystal structure of (-)-gallocatechin-3-O-gallate.
    Tsutsumi H; Sato T; Ishizu T
    Chem Pharm Bull (Tokyo); 2010 Apr; 58(4):572-4. PubMed ID: 20410646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Study of stereochemical structures of complex of tea catechins and caffeine].
    Tsutsumi H
    Yakugaku Zasshi; 2012; 132(8):925-31. PubMed ID: 22864351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of High-Order Functions Using (-)-Epigallocatechin-3-O-gallate in Water.
    Ishizu T
    Chem Pharm Bull (Tokyo); 2020; 68(12):1143-1154. PubMed ID: 33268646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chiral Recognition of Pharmaceuticals Having a Xanthine Skeleton by (-)-Epigallocatechin-3-O-gallate in Water.
    Tsutsumi H; Tanabe H; Ishizu T
    Chem Pharm Bull (Tokyo); 2018; 66(6):620-623. PubMed ID: 29863063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of Tea-Polysaccharide Conjugates and Metal Ions on Precipitate Formation by Epigallocatechin Gallate and Caffeine, the Key Components of Green Tea Infusion.
    Chen X; Du Y; Wu L; Xie J; Chen X; Hu B; Wu Z; Yao Q; Li Q
    J Agric Food Chem; 2019 Apr; 67(13):3744-3751. PubMed ID: 30788964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complexation of caffeine and theophylline with epigallocatechin gallate in aqueous solution: Nuclear magnetic resonance, molecular docking and thermodynamics studies.
    Guo C; Li J; Chen Y; Geng F; Li B
    Food Res Int; 2021 Oct; 148():110587. PubMed ID: 34507732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular Capture and Conformational Change of Diketopiperazines Containing Proline Residues by Epigallocatechin-3-O-gallate in Water.
    Ishizu T; Tokunaga M; Fukuda M; Matsumoto M; Goromaru T; Takemoto S
    Chem Pharm Bull (Tokyo); 2021; 69(6):585-589. PubMed ID: 34078804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Association of Catechin Molecules in Water: Quantitative Binding Study and Complex Structure Analysis.
    Ujihara T; Hayashi N
    J Nat Prod; 2016 Jan; 79(1):66-73. PubMed ID: 26720794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chiral Recognition of Diketopiperazine Cyclo(Pro-Gly) and Propranolol Using (-)-Epigallocatechin-3-O-gallate.
    Ishizu T; Tsutsumi H; Yokoyama E; Tanabe H; Yokoyama A
    Chem Pharm Bull (Tokyo); 2016; 64(2):142-9. PubMed ID: 26833443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diastereomeric difference of inclusion modes between (-)-epicatechin gallate, (-)-epigallocatechin gallate and (+)-gallocatechin gallate, with beta-cyclodextrin in aqueous solvent.
    Ishizu T; Kajitani S; Tsutsumi H; Yamamoto H; Harano K
    Magn Reson Chem; 2008 May; 46(5):448-56. PubMed ID: 18318450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Position and orientation of gallated proanthocyanidins in lipid bilayer membranes: influence of polymerization degree and linkage type.
    Zhu W; Khalifa I; Peng J; Li C
    J Biomol Struct Dyn; 2018 Aug; 36(11):2862-2875. PubMed ID: 28844180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and intramolecular flexibility of beta-cyclodextrin complex with (-)-epigallocatechin gallate in aqueous solvent.
    Ishizu T; Hirata C; Yamamoto H; Harano K
    Magn Reson Chem; 2006 Aug; 44(8):776-83. PubMed ID: 16705621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binding energy of tea catechin/caffeine complexes in water evaluated by titration experiments with 1H-NMR.
    Hayashi N; Ujihara T; Kohata K
    Biosci Biotechnol Biochem; 2004 Dec; 68(12):2512-8. PubMed ID: 15618622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.