BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 24881869)

  • 1. Introducing mixed-charge copolymers as wound dressing biomaterials.
    Jhong JF; Venault A; Liu L; Zheng J; Chen SH; Higuchi A; Huang J; Chang Y
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9858-70. PubMed ID: 24881869
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hemocompatibility of pseudozwitterionic polymer brushes with a systematic well-defined charge-bias control.
    Jhong JF; Sin MC; Kung HH; Chinnathambi A; Alharbi SA; Chang Y
    J Biomater Sci Polym Ed; 2014; 25(14-15):1558-72. PubMed ID: 24894872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hemocompatibility of polyampholyte copolymers with well-defined charge bias in human blood.
    Shih YJ; Chang Y; Quemener D; Yang HS; Jhong JF; Ho FM; Higuchi A; Chang Y
    Langmuir; 2014 Jun; 30(22):6489-96. PubMed ID: 24832682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hemocompatible mixed-charge copolymer brushes of pseudozwitterionic surfaces resistant to nonspecific plasma protein fouling.
    Chang Y; Shu SH; Shih YJ; Chu CW; Ruaan RC; Chen WY
    Langmuir; 2010 Mar; 26(5):3522-30. PubMed ID: 19947616
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Healing kinetics of diabetic wounds controlled with charge-biased hydrogel dressings.
    Venault A; Bai YW; Dizon GV; Chou HE; Chiang HC; Lo CT; Zheng J; Aimar P; Chang Y
    J Mater Chem B; 2019 Dec; 7(45):7184-7194. PubMed ID: 31657427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface charge-bias impact of amine-contained pseudozwitterionic biointerfaces on the human blood compatibility.
    Venault A; Hsu KJ; Yeh LC; Chinnathambi A; Ho HT; Chang Y
    Colloids Surf B Biointerfaces; 2017 Mar; 151():372-383. PubMed ID: 28063289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface zwitterionization of expanded poly(tetrafluoroethylene) membranes via atmospheric plasma-induced polymerization for enhanced skin wound healing.
    Jhong JF; Venault A; Hou CC; Chen SH; Wei TC; Zheng J; Huang J; Chang Y
    ACS Appl Mater Interfaces; 2013 Jul; 5(14):6732-42. PubMed ID: 23795955
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stimuli-responsive and hemocompatible pseudozwitterionic interfaces.
    Venault A; Zheng YS; Chinnathambi A; Alharbi SA; Ho HT; Chang Y; Chang Y
    Langmuir; 2015 Mar; 31(9):2861-9. PubMed ID: 25680392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Turning Expanded Poly(tetrafluoroethylene) Membranes into Potential Skin Wound Dressings by Grafting a Bioinert Epoxylated PEGMA Copolymer.
    Venault A; Liou CS; Yeh LC; Jhong JF; Huang J; Chang Y
    ACS Biomater Sci Eng; 2017 Dec; 3(12):3338-3350. PubMed ID: 33445374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface modification with poly(sulfobetaine methacrylate-co-acrylic acid) to reduce fibrinogen adsorption, platelet adhesion, and plasma coagulation.
    Kuo WH; Wang MJ; Chien HW; Wei TC; Lee C; Tsai WB
    Biomacromolecules; 2011 Dec; 12(12):4348-56. PubMed ID: 22077421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of nonstick and drug-loaded wound dressing based on the hydrolytic hydrophobic poly(carboxybetaine) ester analogue.
    Ji F; Lin W; Wang Z; Wang L; Zhang J; Ma G; Chen S
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):10489-94. PubMed ID: 24099415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a functional wound dressing composed of hyaluronic acid spongy sheet containing bioactive components: evaluation of wound healing potential in animal tests.
    Shimizu N; Ishida D; Yamamoto A; Kuroyanagi M; Kuroyanagi Y
    J Biomater Sci Polym Ed; 2014; 25(12):1278-91. PubMed ID: 24959914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chitosan based surfactant polymers designed to improve blood compatibility on biomaterials.
    Sagnella S; Mai-Ngam K
    Colloids Surf B Biointerfaces; 2005 May; 42(2):147-55. PubMed ID: 15833667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hemocompatible control of sulfobetaine-grafted polypropylene fibrous membranes in human whole blood via plasma-induced surface zwitterionization.
    Chen SH; Chang Y; Lee KR; Wei TC; Higuchi A; Ho FM; Tsou CC; Ho HT; Lai JY
    Langmuir; 2012 Dec; 28(51):17733-42. PubMed ID: 23181727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anti-Bioadhesive Coating Based on Easy to Make Pseudozwitterionic RAFT Block Copolymers for Blood-Contacting Applications.
    Nehache S; Yeh CC; Semsarilar M; Deratani A; Chang Y; Quemener D
    Macromol Biosci; 2016 Jan; 16(1):57-62. PubMed ID: 26222768
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of polymeric biomaterials as wound healing agents.
    Agrawal P; Soni S; Mittal G; Bhatnagar A
    Int J Low Extrem Wounds; 2014 Sep; 13(3):180-90. PubMed ID: 25056991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrospun zwitterionic poly(sulfobetaine methacrylate) for nonadherent, superabsorbent, and antimicrobial wound dressing applications.
    Lalani R; Liu L
    Biomacromolecules; 2012 Jun; 13(6):1853-63. PubMed ID: 22545647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Semi-interpenetrating polymer networks composed of silk fibroin and poly(ethylene glycol) for wound dressing.
    Kweon H; Yeo JH; Lee KG; Lee HC; Na HS; Won YH; Cho CS
    Biomed Mater; 2008 Sep; 3(3):034115. PubMed ID: 18708709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Blood compatibility of surfaces with superlow protein adsorption.
    Zhang Z; Zhang M; Chen S; Horbett TA; Ratner BD; Jiang S
    Biomaterials; 2008 Nov; 29(32):4285-91. PubMed ID: 18722010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of the stiffness of three-dimensional alginate/collagen-I interpenetrating networks on fibroblast biology.
    Branco da Cunha C; Klumpers DD; Li WA; Koshy ST; Weaver JC; Chaudhuri O; Granja PL; Mooney DJ
    Biomaterials; 2014 Oct; 35(32):8927-36. PubMed ID: 25047628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.