These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 24882221)
21. Tartrate fermentation with H Pereira-Mora L; Guerrero LD; Erijman L; Fernández-Scavino A Appl Environ Microbiol; 2024 Apr; 90(4):e0235123. PubMed ID: 38517167 [TBL] [Abstract][Full Text] [Related]
22. Low nitrogen fertilization adapts rice root microbiome to low nutrient environment by changing biogeochemical functions. Ikeda S; Sasaki K; Okubo T; Yamashita A; Terasawa K; Bao Z; Liu D; Watanabe T; Murase J; Asakawa S; Eda S; Mitsui H; Sato T; Minamisawa K Microbes Environ; 2014; 29(1):50-9. PubMed ID: 24463575 [TBL] [Abstract][Full Text] [Related]
23. Changes in activity and community structure of methane-oxidizing bacteria over the growth period of rice. Eller G; Frenzel P Appl Environ Microbiol; 2001 Jun; 67(6):2395-403. PubMed ID: 11375143 [TBL] [Abstract][Full Text] [Related]
24. Structure and function of the methanogenic microbial communities in Uruguayan soils shifted between pasture and irrigated rice fields. Scavino AF; Ji Y; Pump J; Klose M; Claus P; Conrad R Environ Microbiol; 2013 Sep; 15(9):2588-602. PubMed ID: 23763330 [TBL] [Abstract][Full Text] [Related]
25. Succession of bacterial populations during plant residue decomposition in rice field soil. Rui J; Peng J; Lu Y Appl Environ Microbiol; 2009 Jul; 75(14):4879-86. PubMed ID: 19465536 [TBL] [Abstract][Full Text] [Related]
26. Methane emission and dynamics of methanotrophic and methanogenic communities in a flooded rice field ecosystem. Lee HJ; Kim SY; Kim PJ; Madsen EL; Jeon CO FEMS Microbiol Ecol; 2014 Apr; 88(1):195-212. PubMed ID: 24410836 [TBL] [Abstract][Full Text] [Related]
27. The genotype of the calcium/calmodulin-dependent protein kinase gene (CCaMK) determines bacterial community diversity in rice roots under paddy and upland field conditions. Ikeda S; Okubo T; Takeda N; Banba M; Sasaki K; Imaizumi-Anraku H; Fujihara S; Ohwaki Y; Ohshima K; Fukuta Y; Eda S; Mitsui H; Hattori M; Sato T; Shinano T; Minamisawa K Appl Environ Microbiol; 2011 Jul; 77(13):4399-405. PubMed ID: 21551283 [TBL] [Abstract][Full Text] [Related]
28. Applying stable isotope probing of phospholipid fatty acids and rRNA in a Chinese rice field to study activity and composition of the methanotrophic bacterial communities in situ. Qiu Q; Noll M; Abraham WR; Lu Y; Conrad R ISME J; 2008 Jun; 2(6):602-14. PubMed ID: 18385771 [TBL] [Abstract][Full Text] [Related]
29. Impact of elevated CO2 and temperature on soil C and N dynamics in relation to CH4 and N2O emissions from tropical flooded rice (Oryza sativa L.). Bhattacharyya P; Roy KS; Neogi S; Dash PK; Nayak AK; Mohanty S; Baig MJ; Sarkar RK; Rao KS Sci Total Environ; 2013 Sep; 461-462():601-11. PubMed ID: 23764672 [TBL] [Abstract][Full Text] [Related]
30. Archaeal community structure and pathway of methane formation on rice roots. Chin KJ; Lueders T; Friedrich MW; Klose M; Conrad R Microb Ecol; 2004 Jan; 47(1):59-67. PubMed ID: 15259270 [TBL] [Abstract][Full Text] [Related]
31. Temporal dynamics of bacterial and fungal communities in a genetically modified (GM) rice ecosystem. Lee SH; Kim CG; Kang H Microb Ecol; 2011 Apr; 61(3):646-59. PubMed ID: 21128072 [TBL] [Abstract][Full Text] [Related]
32. Dynamics of bacterial communities in rice field soils as affected by different long-term fertilization practices. Ahn JH; Lee SA; Kim JM; Kim MS; Song J; Weon HY J Microbiol; 2016 Nov; 54(11):724-731. PubMed ID: 27796926 [TBL] [Abstract][Full Text] [Related]
33. Diversity of Methane-Oxidizing Bacteria in Soils from "Hot Lands of Medolla" (Italy) Featured by Anomalous High-Temperatures and Biogenic CO Cappelletti M; Ghezzi D; Zannoni D; Capaccioni B; Fedi S Microbes Environ; 2016 Dec; 31(4):369-377. PubMed ID: 27645100 [TBL] [Abstract][Full Text] [Related]
34. Different behaviour of methanogenic archaea and Thaumarchaeota in rice field microcosms. Ke X; Lu Y; Conrad R FEMS Microbiol Ecol; 2014 Jan; 87(1):18-29. PubMed ID: 23909555 [TBL] [Abstract][Full Text] [Related]
36. Uncultivated Methylocystis Species in Paddy Soil Include Facultative Methanotrophs that Utilize Acetate. Leng L; Chang J; Geng K; Lu Y; Ma K Microb Ecol; 2015 Jul; 70(1):88-96. PubMed ID: 25475784 [TBL] [Abstract][Full Text] [Related]
37. Specific detection of Bradyrhizobium and Rhizobium strains colonizing rice (Oryza sativa) roots by 16S-23S ribosomal DNA intergenic spacer-targeted PCR. Tan Z; Hurek T; Vinuesa P; Müller P; Ladha JK; Reinhold-Hurek B Appl Environ Microbiol; 2001 Aug; 67(8):3655-64. PubMed ID: 11472944 [TBL] [Abstract][Full Text] [Related]
38. Regulation of microbial methane production and oxidation by intermittent drainage in rice field soil. Ma K; Lu Y FEMS Microbiol Ecol; 2011 Mar; 75(3):446-56. PubMed ID: 21198683 [TBL] [Abstract][Full Text] [Related]
39. Coupled steel slag and biochar amendment correlated with higher methanotrophic abundance and lower CH Wang M; Wang C; Lan X; Abid AA; Xu X; Singla A; Sardans J; Llusià J; Peñuelas J; Wang W Environ Geochem Health; 2020 Feb; 42(2):483-497. PubMed ID: 31342217 [TBL] [Abstract][Full Text] [Related]
40. Diversity of the particulate methane monooxygenase gene in methanotrophic samples from different rice field soils in China and the Philippines. Hoffmann T; Horz HP; Kemnitz D; Conrad R Syst Appl Microbiol; 2002 Aug; 25(2):267-74. PubMed ID: 12353882 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]