These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 24882409)

  • 1. X-ray crystallographic structure of RNase Po1 that exhibits anti-tumor activity.
    Kobayashi H; Katsutani T; Hara Y; Motoyoshi N; Itagaki T; Akita F; Higashiura A; Yamada Y; Inokuchi N; Suzuki M
    Biol Pharm Bull; 2014; 37(6):968-78. PubMed ID: 24882409
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The inhibition of human tumor cell proliferation by RNase Pol, a member of the RNase T1 family, from Pleurotus ostreatus.
    Kobayashi H; Motoyoshi N; Itagaki T; Tabata K; Suzuki T; Inokuchi N
    Biosci Biotechnol Biochem; 2013; 77(7):1486-91. PubMed ID: 23832341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purification and primary structure of a new guanylic acid specific ribonuclease from Pleurotus ostreatus.
    Nomura H; Inokuchi N; Kobayashi H; Koyama T; Iwama M; Ohgi K; Irie M
    J Biochem; 1994 Jul; 116(1):26-33. PubMed ID: 7798182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. X-Ray Crystallographic Structure of Hericium erinaceus Ribonuclease, RNase He1 in Complex with Zinc.
    Kobayashi H; Sangawa T; Takebe K; Motoyoshi N; Itagaki T; Suzuki M
    Biol Pharm Bull; 2019; 42(12):2054-2061. PubMed ID: 31787719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of the replacement of aspartic acid/glutamic acid residues with asparagine/glutamine residues in RNase He1 from Hericium erinaceus on inhibition of human leukemia cell line proliferation.
    Kobayashi H; Motoyoshi N; Itagaki T; Suzuki M; Inokuchi N
    Biosci Biotechnol Biochem; 2015; 79(2):211-7. PubMed ID: 25338779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutagenesis of the novel Hericium erinaceus ribonuclease, RNase He1, reveals critical responsible residues for enzyme stability and activity.
    Kobayashi H; Motoyoshi N; Itagaki T; Inokuchi N
    Biol Pharm Bull; 2014; 37(11):1843-7. PubMed ID: 25366489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Structures and functions of ribonucleases].
    Irie M
    Yakugaku Zasshi; 1997 Sep; 117(9):561-82. PubMed ID: 9357326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contribution of a conserved asparagine to the conformational stability of ribonucleases Sa, Ba, and T1.
    Hebert EJ; Giletto A; Sevcik J; Urbanikova L; Wilson KS; Dauter Z; Pace CN
    Biochemistry; 1998 Nov; 37(46):16192-200. PubMed ID: 9819211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of ribonuclease T1 carboxymethylated at Glu58 in complex with 2'-GMP.
    Ishikawa K; Suzuki E; Tanokura M; Takahashi K
    Biochemistry; 1996 Jun; 35(25):8329-34. PubMed ID: 8679590
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystallographic study of Glu58Ala RNase T1 x 2'-guanosine monophosphate at 1.9-A resolution.
    Pletinckx J; Steyaert J; Zegers I; Choe HW; Heinemann U; Wyns L
    Biochemistry; 1994 Feb; 33(7):1654-62. PubMed ID: 7906540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structures of ribonuclease F1 of Fusarium moniliforme in its free form and in complex with 2'GMP.
    Vassylyev DG; Katayanagi K; Ishikawa K; Tsujimoto-Hirano M; Danno M; Pähler A; Matsumoto O; Matsushima M; Yoshida H; Morikawa K
    J Mol Biol; 1993 Apr; 230(3):979-96. PubMed ID: 8386773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure of RNase T1 with 3'-guanylic acid and guanosine.
    Zegers I; Haikal AF; Palmer R; Wyns L
    J Biol Chem; 1994 Jan; 269(1):127-33. PubMed ID: 8276784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissection of the structural and functional role of a conserved hydration site in RNase T1.
    Langhorst U; Loris R; Denisov VP; Doumen J; Roose P; Maes D; Halle B; Steyaert J
    Protein Sci; 1999 Apr; 8(4):722-30. PubMed ID: 10211818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The three-dimensional structure of guanine-specific ribonuclease F1 in solution determined by NMR spectroscopy and distance geometry.
    Nakai T; Yoshikawa W; Nakamura H; Yoshida H
    Eur J Biochem; 1992 Aug; 208(1):41-51. PubMed ID: 1511688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional structure of Gln25-ribonuclease T1 at 1.84-A resolution: structural variations at the base recognition and catalytic sites.
    Arni RK; Pal GP; Ravichandran KG; Tulinsky A; Walz FG; Metcalf P
    Biochemistry; 1992 Mar; 31(12):3126-35. PubMed ID: 1554699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computer modeling studies of ribonuclease T1-guanosine monophosphate complexes.
    Balaji PV; Saenger W; Rao VS
    Biopolymers; 1990; 30(3-4):257-72. PubMed ID: 2177661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of the NMR structure of Gln25-ribonuclease T1.
    Hatano K; Kojima M; Suzuki E; Tanokura M; Takahashi K
    Biol Chem; 2003 Aug; 384(8):1173-83. PubMed ID: 12974386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of RNase T1(Y45W) complexed with 3'AMP and GflpA.
    Gohda K; Itoh T; Hiramatsu Y; Tomita K; Nishikawa S; Uesugi S; Morioka H; Ohtsuka E; Ikehara M; Hakoshima T
    J Biochem; 1993 Dec; 114(6):842-8. PubMed ID: 8138541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Isolation, analysis of amino acid sequence and crystallization of the extracellular ribonuclease Th1 from Trichoderma harzianum-01].
    Bezborodova SI; Vasileva-Tonkova ES; Poliakov KM; Shliapnikov SV
    Bioorg Khim; 1988 Apr; 14(4):453-66. PubMed ID: 3139001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of human pancreatic ribonuclease by the human ribonuclease inhibitor protein.
    Johnson RJ; McCoy JG; Bingman CA; Phillips GN; Raines RT
    J Mol Biol; 2007 Apr; 368(2):434-49. PubMed ID: 17350650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.