BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 24882736)

  • 1. Megakaryocytes are mechanically responsive and influence osteoblast proliferation and differentiation.
    Soves CP; Miller JD; Begun DL; Taichman RS; Hankenson KD; Goldstein SA
    Bone; 2014 Sep; 66():111-20. PubMed ID: 24882736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pyk2 and Megakaryocytes Regulate Osteoblast Differentiation and Migration Via Distinct and Overlapping Mechanisms.
    Eleniste PP; Patel V; Posritong S; Zero O; Largura H; Cheng YH; Himes ER; Hamilton M; Ekwealor JTB; Kacena MA; Bruzzaniti A
    J Cell Biochem; 2016 Jun; 117(6):1396-406. PubMed ID: 26552846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aging negatively impacts the ability of megakaryocytes to stimulate osteoblast proliferation and bone mass.
    Maupin KA; Himes ER; Plett AP; Chua HL; Singh P; Ghosh J; Mohamad SF; Abeysekera I; Fisher A; Sampson C; Hong JM; Childress P; Alvarez M; Srour EF; Bruzzaniti A; Pelus LM; Orschell CM; Kacena MA
    Bone; 2019 Oct; 127():452-459. PubMed ID: 31299382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of gap junctions in megakaryocyte-mediated osteoblast proliferation and differentiation.
    Ciovacco WA; Goldberg CG; Taylor AF; Lemieux JM; Horowitz MC; Donahue HJ; Kacena MA
    Bone; 2009 Jan; 44(1):80-6. PubMed ID: 18848655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pyk2 regulates megakaryocyte-induced increases in osteoblast number and bone formation.
    Cheng YH; Hooker RA; Nguyen K; Gerard-O'Riley R; Waning DL; Chitteti BR; Meijome TE; Chua HL; Plett AP; Orschell CM; Srour EF; Mayo LD; Pavalko FM; Bruzzaniti A; Kacena MA
    J Bone Miner Res; 2013 Jun; 28(6):1434-45. PubMed ID: 23362087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Megakaryocytic Maturation in Response to Shear Flow Is Mediated by the Activator Protein 1 (AP-1) Transcription Factor via Mitogen-activated Protein Kinase (MAPK) Mechanotransduction.
    Luff SA; Papoutsakis ET
    J Biol Chem; 2016 Apr; 291(15):7831-43. PubMed ID: 26814129
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Megakaryocyte-bone cell interactions.
    Kacena MA; Ciovacco WA
    Adv Exp Med Biol; 2010; 658():31-41. PubMed ID: 19950013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Signaling pathways involved in megakaryocyte-mediated proliferation of osteoblast lineage cells.
    Cheng YH; Streicher DA; Waning DL; Chitteti BR; Gerard-O'Riley R; Horowitz MC; Bidwell JP; Pavalko FM; Srour EF; Mayo LD; Kacena MA
    J Cell Physiol; 2015 Mar; 230(3):578-86. PubMed ID: 25160801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immature and mature megakaryocytes enhance osteoblast proliferation and inhibit osteoclast formation.
    Ciovacco WA; Cheng YH; Horowitz MC; Kacena MA
    J Cell Biochem; 2010 Mar; 109(4):774-81. PubMed ID: 20052670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Megakaryocyte-osteoblast interaction revealed in mice deficient in transcription factors GATA-1 and NF-E2.
    Kacena MA; Shivdasani RA; Wilson K; Xi Y; Troiano N; Nazarian A; Gundberg CM; Bouxsein ML; Lorenzo JA; Horowitz MC
    J Bone Miner Res; 2004 Apr; 19(4):652-60. PubMed ID: 15005853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Embryonic stem cell-derived osteocytes are capable of responding to mechanical oscillatory hydrostatic pressure.
    Ehnes DD; Price FD; Shrive NG; Hart DA; Rancourt DE; zur Nieden NI
    J Biomech; 2015 Jul; 48(10):1915-21. PubMed ID: 25936968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Osteogenic differentiation of mesenchymal stem cells is regulated by osteocyte and osteoblast cells in a simplified bone niche.
    Birmingham E; Niebur GL; McHugh PE; Shaw G; Barry FP; McNamara LM
    Eur Cell Mater; 2012 Jan; 23():13-27. PubMed ID: 22241610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. S100 Calcium-Binding Protein P Secreted from Megakaryocytes Promotes Osteoclast Maturation.
    Lee SH; Ihn HJ; Park EK; Kim JE
    Int J Mol Sci; 2021 Jun; 22(11):. PubMed ID: 34200172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of bone metabolism by megakaryocytes in a paracrine manner.
    Lee YS; Kwak MK; Moon SA; Choi YJ; Baek JE; Park SY; Kim BJ; Lee SH; Koh JM
    Sci Rep; 2020 Feb; 10(1):2277. PubMed ID: 32042021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Megakaryocytes regulate expression of Pyk2 isoforms and caspase-mediated cleavage of actin in osteoblasts.
    Kacena MA; Eleniste PP; Cheng YH; Huang S; Shivanna M; Meijome TE; Mayo LD; Bruzzaniti A
    J Biol Chem; 2012 May; 287(21):17257-17268. PubMed ID: 22447931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Megakaryocytes promote bone formation through coupling osteogenesis with angiogenesis by secreting TGF-β1.
    Tang Y; Hu M; Xu Y; Chen F; Chen S; Chen M; Qi Y; Shen M; Wang C; Lu Y; Zhang Z; Zeng H; Quan Y; Wang F; Su Y; Zeng D; Wang S; Wang J
    Theranostics; 2020; 10(5):2229-2242. PubMed ID: 32104505
    [No Abstract]   [Full Text] [Related]  

  • 17. Mechanically stimulated bone cells secrete paracrine factors that regulate osteoprogenitor recruitment, proliferation, and differentiation.
    Brady RT; O'Brien FJ; Hoey DA
    Biochem Biophys Res Commun; 2015 Mar; 459(1):118-23. PubMed ID: 25721667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strain uses gap junctions to reverse stimulation of osteoblast proliferation by osteocytes.
    Suswillo RF; Javaheri B; Rawlinson SC; Dowthwaite GP; Lanyon LE; Pitsillides AA
    Cell Biochem Funct; 2017 Jan; 35(1):56-65. PubMed ID: 28083967
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanically stimulated osteocytes regulate osteoblastic activity via gap junctions.
    Taylor AF; Saunders MM; Shingle DL; Cimbala JM; Zhou Z; Donahue HJ
    Am J Physiol Cell Physiol; 2007 Jan; 292(1):C545-52. PubMed ID: 16885390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluid shear stress induces less calcium response in a single primary osteocyte than in a single osteoblast: implication of different focal adhesion formation.
    Kamioka H; Sugawara Y; Murshid SA; Ishihara Y; Honjo T; Takano-Yamamoto T
    J Bone Miner Res; 2006 Jul; 21(7):1012-21. PubMed ID: 16813522
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.