BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 24883388)

  • 1. Towards a low-cost mobile subcutaneous vein detection solution using near-infrared spectroscopy.
    Juric S; Flis V; Debevc M; Holzinger A; Zalik B
    ScientificWorldJournal; 2014; 2014():365902. PubMed ID: 24883388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vein Pattern Locating Technology for Cannulation: A Review of the Low-Cost Vein Finder Prototypes Utilizing near Infrared (NIR) Light to Improve Peripheral Subcutaneous Vein Selection for Phlebotomy.
    Pan CT; Francisco MD; Yen CK; Wang SY; Shiue YL
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31426370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Need help finding a vein?
    Krueger A
    Nursing; 2007 Jun; 37(6):39-41. PubMed ID: 17538434
    [No Abstract]   [Full Text] [Related]  

  • 4. An innovative approach to near-infrared spectroscopy using a standard mobile device and its clinical application in the real-time visualization of peripheral veins.
    Juric S; Zalik B
    BMC Med Inform Decis Mak; 2014 Nov; 14():100. PubMed ID: 25421099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Making the invisible visible: near-infrared spectroscopy and phlebotomy in children.
    Strehle EM
    Telemed J E Health; 2010 Oct; 16(8):889-93. PubMed ID: 20925568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New biomedical devices that use near-infrared technology to assist with phlebotomy and vascular access.
    Yen K; Gorelick MH
    Pediatr Emerg Care; 2013 Mar; 29(3):383-5; quiz 386-7. PubMed ID: 23462399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A biomedical device to improve pediatric vascular access success.
    Hess HA
    Pediatr Nurs; 2010; 36(5):259-63. PubMed ID: 21067078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prospective evaluation of venous access difficulty and a near-infrared vein visualizer at four French haemophilia treatment centres.
    Guillon P; Makhloufi M; Baillie S; Roucoulet C; Dolimier E; Masquelier AM
    Haemophilia; 2015 Jan; 21(1):21-6. PubMed ID: 25335191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Does infrared visualization improve selection of venipuncture sites for indwelling needle at the forearm in second-year nursing students?
    Fukuroku K; Narita Y; Taneda Y; Kobayashi S; Gayle AA
    Nurse Educ Pract; 2016 May; 18():1-9. PubMed ID: 27235559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D Near Infrared and Ultrasound Imaging of Peripheral Blood Vessels for Real-Time Localization and Needle Guidance.
    Chen AI; Balter ML; Maguire TJ; Yarmush ML
    Med Image Comput Comput Assist Interv; 2016 Oct; 9902():388-396. PubMed ID: 27981261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Near-infrared imaging in intravenous cannulation in children: a cluster randomized clinical trial.
    Cuper NJ; de Graaff JC; Verdaasdonk RM; Kalkman CJ
    Pediatrics; 2013 Jan; 131(1):e191-7. PubMed ID: 23230072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Implementation of Vein Viewer Technology to Decrease PICC Line Placements on Patients with Limited Venous Access.
    Wilcos P
    Ky Nurse; 2017 Jan; 65(1):9. PubMed ID: 30376244
    [No Abstract]   [Full Text] [Related]  

  • 13. A device for improving the visual clarity and dimension of veins.
    Asrar M; Al-Habaibeh A; Shakmak B; Shaw SJ
    Br J Nurs; 2018 Oct; 27(19):S26-S36. PubMed ID: 30346822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effectiveness of a near-infrared vascular imaging device to support intravenous cannulation in children with dark skin color: a cluster randomized clinical trial.
    van der Woude OC; Cuper NJ; Getrouw C; Kalkman CJ; de Graaff JC
    Anesth Analg; 2013 Jun; 116(6):1266-71. PubMed ID: 23649104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Innovative algorithm to evaluate the capabilities of visual, near infrared, and infrared technologies for the detection of veins for intravenous cannulation.
    Asrar M; Al-Habaibeh A; Houda M
    Appl Opt; 2016 Dec; 55(34):D67-D75. PubMed ID: 27958441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating NIR vascular imaging to support intravenous cannulation in awake children difficult to cannulate; a randomized clinical trial.
    de Graaff JC; Cuper NJ; van Dijk AT; Timmers-Raaijmaakers BC; van der Werff DB; Kalkman CJ
    Paediatr Anaesth; 2014 Nov; 24(11):1174-9. PubMed ID: 25088349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrasound or near-infrared vascular imaging to guide peripheral intravenous catheterization in children: a pragmatic randomized controlled trial.
    Curtis SJ; Craig WR; Logue E; Vandermeer B; Hanson A; Klassen T
    CMAJ; 2015 May; 187(8):563-570. PubMed ID: 25897047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Utility of near-infrared light devices for pediatric peripheral intravenous cannulation: a systematic review and meta-analysis.
    Park JM; Kim MJ; Yim HW; Lee WC; Jeong H; Kim NJ
    Eur J Pediatr; 2016 Dec; 175(12):1975-1988. PubMed ID: 27785562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Near-infrared imaging of brain tumors using the Tumor Paint BLZ-100 to achieve near-complete resection of brain tumors.
    Butte PV; Mamelak A; Parrish-Novak J; Drazin D; Shweikeh F; Gangalum PR; Chesnokova A; Ljubimova JY; Black K
    Neurosurg Focus; 2014 Feb; 36(2):E1. PubMed ID: 24484247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The difficult venous access].
    Strauß JM; Denk A
    Anasthesiol Intensivmed Notfallmed Schmerzther; 2013 Apr; 48(4):258-63. PubMed ID: 23633258
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.